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PREFACE.

IN preparing this work for the press, I have endeavoured
primarily to keep in view the needs of the same class of
students as my First Book of Mineralogy was written for,
viz,, practical working miners, quarrymen, field geologists,
and students of the Science Classes in connection with
the Department of Science and Art. I believe the work
properly studied will enable its students to pass the Govern-
ment Examinations with credit; but I hope it will do much
more than this, and that my readers will become practical
mineralogists, able to determine the nature of such unknown
species of minerals as may fall in their way, and to appreciate
the relations borne by the science of Mineralogy to the sister
sciences of Chemistry, Geology, Metallurgy, and Mining, I
have endeavoured throughout to use plain language, and in
dealing with Crystallography, I have remembered that a
majority of my readers were not likely to have had much
mathematical training. Consequently it has been necessary
in some instances to adopt somewhat roundabout methods
of definition or descriptions. The liberality of the Publishers
in allowing me such a very large number of woodcuts, has
much assisted me in this direction.

Believing as I do that the Crystallographic system of
Professor Miller is the best yet invented, I have to some

97645



4 PREFACE,

---exi;ent led up to it through the apparently simpler but less
'pbrfect sj:stm bf Nauma.nn, which is adopted by many
. ¢ ‘nclegica ‘beaohers, and arhich T myself used in the First Book
& 'al’réaﬂy inentioied: & I works of this character there can of
course be very little that is absolutely mew, but I have
endeavoured to condense or to simplify much of what has
already been written. Among works particularly made use
of, I may mention those of Nicol, Brooke and Miller, Mitchell

(in Orr’s Circle of the Sciences), and Dana.

My thanks are due to Mr. B. Kitto, F.G.S., of Camborne,
for his valuable assistance in correcting many of the proof
sheets. :

' This volume will be followed by another (now in the press),
giving detailed descriptions of most of the minerals known
to science.

- In conclusion, I would strengly urge teachers of Miner-
alogy not to attempt to teach either from this book or any
other without constant reference to models, and especially
to actual svecimens of the minerals referred to.

. J. H. C.
57 LEMON STREET, TRURO,

October 1877.
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MINERALOGY.

<
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THE GENERAL PRINCIPLES OF MINERALOGY.

CHAPTER L
INTRODUCTION.

1. « Minerals are natural, homogeneous, inorganic bodies.”
This definition includes many substances not usually regarded
as minerals, such as water in its several forms of solid, liquid,
and gas; air; the gases given off from volcanoes or from
fissures in earthquake regions; and liquids like sulphuric
acid and naphtha which are naturally produced in certain
districts.

A strict application of the definition would exclude all
substances of vegetable origin, such as peat, coal, and amber,
but it has been found convenient to include descriptions of
these and a few other similar substances in mineralogical
treatises, and we have not departed from this practice in the
present volume.

2. Rocks are usually mineral substances Lut not minerals.
Some, like granite, gneiss, and elvanite, are aggregates of
several distinct minerals; others, like dolomite, serpentine, and
gypsuwm, are simply impure massive forms of the minerals of
the same names. The following list of the minerals which
most frequently enter into the composition of rock-masses or
of veinstone, occupying fissures in such masses-—rock-formers
as they may be termed—will be useful to the student.
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A.—MiNERALS CommON IN Rock MASSES.

Quartz Apatite.
The Felspars, Calcite,
Kaolin. Dolomite.
The Micas. Halite (Rock Salt).
Tourmaline (Schorl). Sulphur.
Chlorite. Graphite.
Garnet. Magnetite.
Amphibole (Hornblende). Hematite,
Pyroxene (Augite). Limonite.
Serpentine. Chalybite.
Olivine, Pyrites.
Gypsum. Coal.

B.—MINERALS COMMON AS VEINSTONES,
Quartz. Galena. Limonite.
Calcite. Chalcopyrite. Hematite.
Barytes. Mispickel, Chalybite.
Fluor. Pyrites. Chlorite.

The study of rocks belongs to Geology, of which science
Mineralogy may be regarded as an important branch.

3. Minerals have many peculiar mechanical, optical, and
other physical characters. Thus, some like quartz and the
diamond are very hard, others like talc and graphite are very
soft. Most minerals at ordinary temperatures are solid, but
some few, like mercury, naphtha, and water, are liquid, and
others like carbonic acid are gaseous. The complete study
of these properties belongs to Physics, but a considerable
portion of the present volume will be devoted to the con-
gideration of these properties.

4. Minerals have many chemical properties; thus, some
like witherite are poisonous, others like rock-salt form
valuable additions to food, or like mercury are of great value
in medicine. Some are fusible, others infusible ; some are
soluble in water or acids, others quite insoluble. The com-
plete study of these properties belongs to the science of
Chemistry, and Mineralogy may be regarded as the connect-
ing link between Chemistry and Geology.

6. General Mineralogy may be divided, for greater con-
venience of study, into sections as follows :—

1. FormM, 5. CLASSIFICATION,
2. PaystcAt CHARACTERS, 6. DISTRIBUTION,
8. CHEMICAL CHARACTERS, 7. PARAGENESIS,

4, DISCRIMINATON OF MINERALS.



CHAPTER IL
OF THE FORMS OF MINERALS—IMITATIVE FORMS, Erc.

6. The researches of Graham and others have shown that
inorganic matter may exist in two perfectly distinct con-
ditions, known respectively as crystalloid* and colloid.T
The same portion of matter may be at one time crystalloid
and another colloid, the difference being one of condition not
of composition. Thus rock-crystal consists of crystalloid
silica, but if a fragment be powdered, fused with carbonate
of soda, dissolved in water, and precipitated by hydrochloric
acid, the precipitated silica will now be in the colloid state.
‘When in solution, crystalloids differ from colloids in some
very important particulars, and on passing into the solid
form the differences are still more evident.

7. Colloid minerals are few in number. They are totally
devoid of cleavage or distinct internal structure, but they
usually break with a very perfect conchoidal fracture. They
occasionally, but not often, occur in what are called imitative
forms, but are usually amorphous or without definite external
forms.f As examples of true colloid minerals, we may
mention opal and obsidian. - :

8. Crystalloid minerals are very numerous, they include,
indeed, the great majority of mineral species. They may be
either crystallised, crystalline, or crypto-crystalline.

a. Crystallised minerals are those which occur in definite
geometrical forms, the properties and peculiarities of which
will be dealt with in much detail in future chapters.
Ordinary rock-crystal is a perfect example of a crystallised
mineral.

* Tce-like, from rpbowraries (crystallos), ice ¢ides (eidos), resemblanice,
4 Glue-like, from xoarn (colle), glue; and «idos.
3 Formless, from a, without; and wopgn (morphe), form,
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b. Crystalline minerals are‘such as have the peculiar inter-
nal structure observed in those which are crystallised. They
consist, indeed, of a multitude of crystals confusedly crowded
together, so that the external geometrical form is lost or dis-
guised. The cavities or “vughs” of such aggregates, however,
often display distinet crystals. The kind of quartz known as
cross-course spar affords a good example of a crystallised
mineral.

c. Crypto-crystalline* minerals are those in which the
crystalline structure is so minute that it is not ordinarily
observable, but it may be detected in suitably prepared
specimens when examined under the microscope.7 Chalcedony
and agate are good examples of crypto-crystalline minerals.

9. Many crystalline and crypto-crystalline, and some
amorphous minerals, occur in what are known as tmitative
forms. The chief of these are the following :—

Fig. 1.—GLOBULAR.

a. @lohular, fig. 1.—This form is often seen in wavellite,
prehnite, and other minerals. The author has specimens of
pyrites from the chalk of Dover, and of pyritous blende from
Cornwall, which are detached spheres. On breaking a glob-
ular mineral, it is almost always seen to be composed of a
multitude of indistinct crystals radiating from the centre,
and sometimes the outside of the sphere is roughened by the
projecting points of these crystals. Occasionally the true

* kovmwrss (cryptos), concealed.

i ’fra.nsparent minerals may be cut into thin slices and examined

by transmitted light ; opagque minerals should be acted upon slowly
by solvents, and examined by reflected light.
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crystal form of these terminations may be observed, but
usually they are indistinct.

b. Reniform (kidney-shaped), fig. 2.—This form is not
unfrequently met with in nodules of iron pyrites, or other
minerals which occur imbedded in clay or mud. Some kinds
of red and brown hematite are called kidney tron from their
occurrence in this form.

Fig. 2.—RENIFORM.
c. Botryoidal (grape-like), fig. 3.—This form is often seen
in that kind of chalicopyrites known as blistered copper ore.

Fig.3.—BOTRYOIDAL.

d. Mammillary, fig. 4.—This form is often seen in mala-
chite and blistered copper ore.

e. Coralloidal (coral-like), fig. 5.—This structure is ob-
servable in chalcedony and aragonite, especially in specimens
from Styria. Tt sometimes occurs in connection with earthy
deposits of iron ore, when it is called flosferri, or the flower
of iron. g

/- Cone in Cone, fig. 6.—This structure is often met with
in iron ores from the coal measures. It consist of a serics of
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fibrous econcentric conical masses, the points of the cones
meeting together, or sometimes interlaced as shown in the
figure,

Fig. 6.—Coxe 1N CoNE. (From a Photograph.)

g. Stalactitic (icicle-shaped), fig. 7.—Chalcedony, calcite,
and barytes often occur in this form. Sometimes the stal-
actites are hollow, sometimes solid; but in stalactites of calcito
and barytes, a cross-section almost always reveals a structure



THE FORMS OF MINERALS, 15

consisting of fibres radiating from the centre, and the same
thing is visible in properly prepared slices of chalcedony,
when examined under the microscope.

Fig. 8.—VErTICAL SECTION OF A STALACTITE OF CALCITE, showing
successive layers of deposited matter. (From a Photograph).

10. Tt is probable that most, if not all, of the above-described
imitative forms are the result of deposition from solution, at
any rate this is known to be the case in some instances.
Thus, stalactites of calcite, or carbonate of lime, may be seen
in process of formation in caverns in most limestone districts,
and they are very frequently formed under bridges or tunnels
which have been built with lime mortar. The process of
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formation is as follows: rain water containing carbonic
acid in solution in filtering through limestone, mortar, or
other material containing carbonate of lime dissolves a part
of it. On becoming again exposed to the air drop by drop,
part of the carbonic acid is given off, part of the water
evaporates, and part of the carbonate of lime is deposited.
A stalactite once formed the water naturally descends to its
lower end before falling off, and it is there that the greatest
amount of carbonate of lime will be deposited, and in this
direction its growth will be most rapid, although a small
quantity of solid matter will continue to be deposited on the
sides of the stalactite, so producing the concentric structure
shown in the vertical section of a stalactite, fig. 8, and in
the cross-section, fig. 9. The radial
structure appears to be of later
origin; it is really due to an incipient
crystallization set up within the
mass.
The water dropping from the
Fig. 9.—Cross-secriox ox Stalactite will still contain some
LINE A B, fig. 8, showing carbonate of lime in solution. This
concentric and radial will be deposited on the ground
:""“‘3“1111;3' (Froma Pho- ygneath, when the conditions are
P favourable, forming what is known
as stalagmite. A cross-section of
stalagmite, however, will differ from
that of a stalactite, owing to the
tendency which the drops of water
have to spread themselves out. If
the supply of water be abundant a
sheet of stalagmite will be formed
if only a little falls, a pillar of
. stalagmite will gradually rise to-
F‘g,r A}g‘(};rgn‘;(;{w,rgg wards the stalactite above; but in
FLOOR oF A Limzstoxg all cases the separate layers will be
CAVERN, showing layers of about equal thickness throughout,
of equal thickness, as shown in fig. 10.
Many other substances besides carbonate of lime are thus
deposited from solution. In the old workings of several
Cornish tin and copper mines, the writer has frequently seen
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long stalactites of oxide of iron depending from the roof, and
stalagmites of the same material rising from the floor to
meet them. Stalagmites of malachite were seen in process
of formation in the mines of Russia, by Sir Roderick
Murchison.

11, The crystalline structure sometimes observable in the
imitative forms already described, is probably the result
of a secondary action of the crystallising forces, following the
actual formation of the solid mineral. There are, however,
other imitative forms which are merely irregular crystals or
crystalline aggregates, and in the formation of which the
crystallising forces appear to have been concerned from the
first. These are the so-called capillary and wiry forms ob-
servable in native silver, the mossy and leafy forms seen in
native copper, the dendritic markings of oxide of manganese,
the reticulate groupings characteristic of mountain leather,
and the stellate groups of crystals often met with in stilbite
and other minerals. These will be further described in a
future chapter.

13—1 B



CHAPTER IIIL

OF THE GENERAL PROPERTIES OF CRYSTALS,

12, Many minerals occur naturally in forms bounded by
plane surfaces, having peculiar geometrical relations to each
other. These are called “crystals,” the plane surfaces are
termed “planes” or “faces,” the lines formed st the junction
of any two such pianes are “edges,” and the points formed
by the meeting of any three or more edges are called ¢ solid
angles.”

Fig. 11. ' Fig. 12,

Every plane in a crystal has a definite inclination or slope
in relation to every other plane, except such as may be
parallel to it. These mutual inclinations are quite indepen-
dant of the size or general form of the crystals, and they are
constant for similar planes even in different crystals of the
same mineral, as is shown by measurement with the goni-
ometer.* Thus, if figs. 11 and 12 represent crystals of fluor,
the planes @ a will in each case be inclined 90° to each other,
and the planes o 0 109° 28', notwithstanding the difference
in their appearance and in the general aspect of the crystal.
The mode of actual measurement is resorted to when the
crystal form of any specimen is to be determined for the
first time; but the geometrical relations of the planes are
best understood by referring them to certain imaginary lines

* ywria (gonia), an angle; uirper (mctron), a meagure,
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termed axes, which are supposed to exist within every
crystal.

To understand the higher branches of crystallography re-
quires a good deal of mathematical knowledge and skill, but
the attempt has been made to write the crystallographie por-
tion of this volume in such a manner that a very moderate
acquaintance with elementary geometry and with algebraic
signs and formule, may suffice on the part of the student,

LY 8

Fig. 13,

13. We have said that the planes of all crystals are
referred to their axes. TFig. 13 will help the student to
realise what is meant by this statement. Let A - A, B-B,
C — C, represent three axes of a crystal, cutting each other
in the centre, O. In the figure, the axes are drawn in per-
spective, but they are in this instance supposed to be of equal
length, and at right angles to each other. The semi-axes
OA,0-A, 0B, 0-B, OC, O —C, are called the parameters,
Let us suppose one plane of the crystal to be so situated
as to cut the three parameters OA, OB, OC, at their ex-
tremities A, B, C, which, it must be remembered, are equi-
distant from the centre. It is evident that such a plane
will have a definate inclination or slope. Suppose, further,
a plane to exist cutting the three semi-axes in the points
a, b, ¢;, which are also equally distant from the centre O.
Such a plane will be smdller than that cutting the points

L g manrpos
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A, B, 0, but it will be evidently parallel to it, since the
distances Oa, 0b, Oc, are equal. A little consideration will
show that whatever the absolute distances from the centre
may be, so long as they are equal, no new slope or inclination
is possible; the planes so situated will be parallel and similar,
and any sign devised to express the slope of one will indicate
the slope of all. A plane, however, cutting the points a, b, ¢,
will have quite a different slope.

‘We will now suppose a plane to cut the semi-axes O~ A,
0 -B, 0-0C,in the points— A, - B, - C. This plane will be
parallel to one cutting the points —a, — b, — ¢, ; and also to
the planes already described, but on the opposite side of the
centre. If, however, we have a plane cutting the semi-axes
O - A and O - B in — @, — b, but the axis O — Cin the point
— ¢y, it is clear that the slope of this plane will be quite
different from that of the planes just described, and parallel
to the plane @, b, ¢, This slope, however, like the others,
evidently depends not on the absolute lengths of the portions
Oa, Ob, Oc,, but upon their proportions or ratios, and so
with all other planes which we may refer to the same axes.
As there are three axes, and each or all of them may be cut
at any points in any ratios, it is evident that an infinite
number of planes is possible, but that the slopes of all are
fixed so long as we know those ratios. Fortunately, in any
particular mineral, the number of planes is limited by the
fact that the ratios are always comparatively simple and not
very numerous.

14, Elements of Crystals.—In most crystals the planes
are referred to three axes, but in one large class they are
sometimes referred to four. The axes may cut each other at
right angles or at any other angles. The number and
relative situation of the axes, and the ratios of the parameters,
together constitute what are called the elements of a crystal.

15. Crystallographic Notation.—Many systems have been
at different times devised for indicating the relations of the
different planes to the axes, but of these it is only necessary
for the student to be acquainted with three at present, those
used by Professors Mitchell, Naumann, and Miller. A brief
outline of Naumann’s system is given in the ¢ First Book of
Mineralogy,” forming one of this series of text-books, and
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some further explanations will be given hereafter as occasion
may arise. The symbols adopted throughout this work in
describing the various forms, are those of Professor Mitchell,
except when the contrary is stated. They are modified from
those used by Miller, and generally differ but little from
them. Naumann's symbols will also be given in many cases.

In order to understand the symbols of Mitchell and Miller,
we must refer to fig. 14. Let ~A OA,-BOB,~-COC,
represent three axes of a crystal cutting each other in the
centre O. Different planes will cut these axes in different
ratios; but in all crystals some planes will be of more im-
portance than others, and these are regarded as belonging to
primary forms.

Bo

[}
>
tp=
2D -
$D=

Fig. 14.

Suppose one such primary plane to cut the axes in the
points @, b; ¢;, then Og; Ob; Oc; may be regarded as the
parameters of the form in question. Now on the line
- A O A, take Oa, =% Oa,, Oay=} Oa,, and so on; making
as many points as may be necessary towards 0. Take, also,
04—, =00, 0a - ,=0a,, Oa — ;= Oay, on the other side of
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the centre. = Further, suppose Oa, to exist by prolonging
the line — A O A in both directions to any infinite distance.
Determine similar series of pointsin ~—BO B, ~COC, as
shown in the figure.* ;

All the planes of a given crystal will now be parallel to
one or other of the planes passing through three of the
points so determined.

16, In Professor Miller’s system of Notation, the symbol
111 is used for any plane parallel to that cutting the axes in
a, by ¢;, 122 for these parallel to a, b, c, 313, for ay b, cs, and
80 on; the numbers 111, 122, 313, are termed indices. When
any of the points referred to have negative signs, the corre-
sponding indices have negative signs placed over them. Thus,

the indices of a plane parallel to a —, b, ¢, will be 122, and

of @~ b, ¢~ ,will be 103. Indices higher than 6 are very
rarely required.

When planes have to be indicated the precise values of
whose indices are not known, or where a general symbol is
required for any set of planes, the letters 4 % I are used as
general indices, and either of these letters may stand for any
whole numbers, or for zero. Parallel and opposite planes
have the same indices but different signs.

‘When one of the indices of a plane is zero the plane is
parallel to the corresponding axis, since the point in which
the plane intersects the axis is infinitely distant. When
two of the indices are zero the plane is parallel to the cor-
responding two axes. i

17. Sphere of Projection.—A different mode of indicating
the geometric relations of the planes is sometimes adopted
by crystallographers for more convenient calculation. The
centre o, fig. 13, is regarded as the centre of a sphere. The
three axes will of course meet the sphere in six points, called
the “poles of the axes.” This sphere is called a “sphere of
projection.”

18. Normals.—From the centre O, radii are supposed to

e drawn, meeting each plane perpendicularly. It isevident
that the radii so originated will have fixed inclinations

* Many students will be greatly aided bg taking three thin rods of

an

Wood, fastened together in the centre, marking upon them with
compasses the various points referred to in the text.
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to each other. They are called “normals” to the planes,
and the points in which they meet the sphere of projection
are called the “poles” of the corresponding faces. A face
and its pole may be indicated by the same symbol.

The ‘angle included by any two normals is the supplement
of that included by the two corresponding faces, so that it is
easy to determine the angles of any two normals, when that
of the corresponding faces is known, or vice versa. Thus,
if the angle included by two planes be 110° that of their
normals will be 70°

19. Zones.—It frequently happens that several faces of a
cerystal intersect each other, or would do so if they were
produced until they met, so that the intersections form
parallel lines. Such a series of faces is called a  zone.”
The normals of the several faces in a zone lie in one plane,
called the ¢zone-plane,” and the poles all lie in a great circle
of the sphere of projection, called the ‘zone-wcircle.” A
line passing through the centre of the zone-plane, and cutting
it at right angles, will be the zome-axis.” The zone-axis is
parallel to all the faces of the zone. A face may be common
to two or more zones, when its normal will coincide with the
intersections of the several zone-planes,

20. A Form in crystallography is a figiire bounded by a
series of planes, having similar indices, differing only in
their signs, Forms may be indicated by the symbol of any
vne of their faces. Holohedral* or ¢ pleno-tesseral” forms
are those in which the full series of planes having given
indices are presenit. Hemihedralt ot “semi-tesseral” forms
are those in which only alternate faces or groups of faces are
present. In Tetartohedral } forms only one-fourth the full
humber of faces is present. )

21. Combinations.—Any figure bouiided by plades be-
longing to mote tlidn one form, is called a “combination.’
Thus, fig- 15 is a form called the octahedron ; fig. 16 is the
form knowr as the cube. In figs. 17 and 18, which are said
to be combinations of the cube and octahedron, the planes of
both forms appear, and are indicated by corresponding letters.

* &xes (holos), whole ; Bew (Redra), a seat or plane.
T s (hémi), half ; and Dpe.
+ weragros (tetartos), fourth ; and $ga.
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These figures serve also to illustrate the differences in ap-
pearence which may exist when the same planes are more
or Jess developed.

Fig. 17. Fig. 18.

22. Systems of Crystal Forms.—It is usual to group all
crystals under six systems, which have been severally named
as under. The first of these names is that which will be
adopted throughout in this work :—

1. Cubical, (Octahedral, Tesseral, Tessular, Regular, Mono-
metric, ete.)

2. Tetragonal, (Pyramidal, 2 and 1 awial, Dimetric, etc.)

3. Rhombic, (Prismatic, Orthotype, 1 and 1 axial, Tr.-
metric, etc.)

4. Oblique, (Monoclinic, Hemiorthotype, 2 and 1 mem-
bered, etc.)

5. Anorthic, (Zrictinic, Double Oblique, Anorthotype, 1
and 1 memberec?.

6. Hexagonal, (Rhombokedral, 3 and 1 awial etc.

The elements of the six systems (see Art. 14) are as
follows :— :

Cubical.—Three axes at right angles to each other, the
axes (consequently the parameters or semi-axes) equal in
length, As the axes are equal to each other, and similarly
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related in all cubical minerals, the “elements” are said to be
“ fixed.”

Tetragonal.—Three axes at right angles. Two equal to
each other, called lateral. The third or principal axis is
variable ; in some pyramidal minerals it is longer, in others
shorter than the laterals. There is consequently one
“variable element” in this system, viz., the proportion
existing between the length of the “principal” and “lateral”
axes.

Rhombic.—Three axes at right angles. All unequal in
length, and the relative lengths varying in different minerals.
One is selected as the principal, the others are called lateral.
The longer lateral axis is the.“macro-diagonal,” * the shorter
the “brachy-diagonal.” f Thus there are two variable
“elements” in this system, viz., the ratios respectively of
the “macro” and “brachy” diagonals to the principal.

Oblique.—Three axes, two at right angles, the third in-
clined at different angles in different systems; relative lengths
variable in different minerals and usually all unequal. One
of the two which are at right angles is taken for “principal,”
that at right angles with it is termed the ¢ ortho-diagonal,” {
that which is inclined is the -¢clino-diagonal.” § There are
consequently three variable “elements” in this system, viz.,
the ratios of two axes to the third, and the inclination of the
¢ clino-diagonal ” to the ¢ principal.”

Anorthic. || —Three axes: all variable in length and usually
unequal ; all inclined at different angles. Thus there are
four variable “elements” in this system, viz., the ratios of two
axes to the third, and their inclinations to each other. Either
of the axes may be taken as principal, when the other two
will be lateral. The longer lateral may be termed ‘“macro-
diagonal,” the shorter ‘“brachy-diagonal” as in the rhombic
system.

Hexagonal.—Four axes: three lateral—equal—lying in
one plane, and inclined to each other 60°; the fourth is
principal, at right angles to the three lateral, of different
length ; sometimes longer, sometimes shorter. This is the

* waxgos (makros), great. T optos (orthos), right or straight.
t Beaxus (brachus), short. § xaun (cline), inclined.
I & (@), without, and egles.
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only variable element in the system. Professor Miller
refers hexagonal or “rhombohedral” crystals to a system of
three axes of equal length, and equally inclined to each other,
the actual inclination varying with different substances.
This mode is more convenient for calculations in the higher
branches of crystallography, but it does not so clearly re-
present to the non-mathematical student the relations of the
various forms to each other, so that on the whole the
ordinary mode of referring the forms to a system of four
axes, i3 preferred on the present occasion,



CHAPTER 1IV.
REPRESENTATION OF CRYSTAL FORMS.

23. Figures of Crystals.—The most common mode of re-
presenting crystal forms on plane surfaces, is by what is
known ag “isometrical” or “parallel” perspective. This does
not differ from ordinary perspective, except that the vanishing
points are supposed to be infinitely distant. In other words,
lines which are parallel are always drawn parallel and not
converging, and equal lines which make equal angles with
the plane of projection (the paper), are mads equal in length.

7 4 7 / /
24 7 . b
al X4 ) o ’
7 /
4 ’
I’ a b /
a & /4 /
/ 4
v 4
/ ,/
c ¢
c
(¢]
Fig. 19.—Cuse i¥ Orpindky  Fig. 20.—CoBE i¥ PARALLEL
PERSPECTIVE. PERSPECTIVE.

The difference between parallel and ordinary perspective
i3 shown in figs. 19 and 20: In fig. 19 the cube is drawn in
ordinary perspective, arid the parallel and equal lines c ¢, b b,
and @ a, are seen to be converging ; and although they form
equal angles with the plane of projection, are drawn of
unequal lengths. In fig. 20 the cube is drawn in parallel
perspective, and the difference is very easy to be seen, for here
the lines a @, b b, c ¢, are evidently parallel and equal in length.
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Crystals are often drawn, as in fig. 21, as if transparent,
but in complex crystals the multiplicity of lines is very con-
fusing, and even in simple forms the advantage is not great,
so that crystals are more generally drawn as if opaque.

24, Positions of Crystals.—Drawings of crystals differ
much according to the position in which the axes are placed
with referenee to the plane of projection. Thus, in addition
to the representations of the cube given in figs. 16, 19, 20, 21,
the cube may be drawn asin fig. 22, with two axes parallel
to the plane of projection, when it appears as a simple square,
or with the three axes equally inclined, as in fig. 23. This
latter figure is said to be in isometrical perspective,* because
all equal lines are here drawn equal in length. Of these
different modes, that shown in fig. 16 is usually preferred
for crystals belonging to the cubical system, and this mode
will be hereafter adopted in the present work. This is a
projection on a plane parallel to one face of the cube, that
marked 010 by Miller, by parallel lines which are not per-
pendicular to that face.

Fig. 21. Fig. 22, Fig. 23.

A somewhat similar projection is often adopted for crystals
belonging to the tetragonal or pyramidal system, and for
the rhombic or prismatic system ; the principal axis being
placed vertically and parallel to the plane of projection.
Another mode is to place the principal axis perpendicular to
the plane of projection or parallel to the plane 001 of Af:ller,
and O P of Naumann. The advantage of this mode is, that

* From seos (is0s), equal, and psrpoy (metron), a measure.



REPRESENTATION OF CRYSTAL FORMS. 29

it shows the equality of the two lateral axes in the tetragonal
system, and the ratios of the macro and brachy-diagonals in

the rhombic system. By the
ordinary mode of representa-
tion the crystals belonging to
these two systems may readily
be confounded ; thus, the
tetragonal pyramid, fig. 24,
may easily be mistaken for
the rhombic pyramid, fig. 25,

or vice versa. Figs. 26 and

27 show the other mode of  Fig. 24. Fig. 25.
projecting the same pyramids; and it will be seen that
the distinction between

the two systems is now i
very plain. Both modes l
have their advantages,
however, and both will

be occasionally adopted
hereafter. Fig. 26. Fig. 27.

Crystals belonging to the oblique system are often drawn
80 as to show as many planes as possible, without much re-
gard to position, but it is generally better to project them on
a plane parallel to the clino-diagonal and the principal axis,
or to the plane 010 Miller, [ ®Pwx | Naumann, the principal
axis being placed vertically. This mode, which we have
usually adopted in the succeeding chapters, has the advantage
of showing the exact amount of inclination of the clino-
diagonal to the principal. In the anorthic system the crystals
are projected on a plane at right angles to the planes 100,010,
of Miller, or wPowo P, of Naumann.

In the hexagonal system the plane of projection is either
parallel to the principal axis or parallel to the basal plane
111 Miller, O P Naumann.

25. Crystal Maps.—These are representations on plane
surfaces of the sphere of projection, upon which are shown
the poles of the several faces. The orthographic projection
of the sphere is sometimes used, but the stereographic pro-
jection is preferred, because it has the advantage of represent-
ing all great circles of the spheres by straight lines or arcs of
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circles. In the orthographic projection the sphere is supposed
to be viewed with the eye placed opposite the centre, but at an
infinite distance. In other words, 1t is projected upon a plane
by lines parallel and perpendicular to it, as in fig. 28a; the
result is that areas mnear the circumference of the projected
circle are represented on a much smaller scale than those
near the centre, and consequently much distorted as to form.
Thus, in the figure 28a, the points @ b ¢ d on the semi-
circle are plainly equi-distant, but of their projections
abcd, ab and ¢ d' are nearer together than &’'c¢. 1In
the stereographic projection the lines converge to a point
opposite the centre, but at a distance from the plane of pro-
jection equal to the radius of the sphere, as in fig. 285. The
result is that the outside areas are represented on a larger
scale than those situated near the centre; thus, ¢’ b’ and ¢’ &'
are projected farther apart than &'c¢’; but the distortion of
parts is on the whole less than with the former projection.

a _» c 4 q 7 Al
A p\ ea' 5 T 1
) ¢ 2]
Fig. 28a. Fig. 28b.

-A good idea of the principle of orthographic projection may
be obtained by supposing a Aollow hemisphere viewed through
a sheet of glass, from an infinite distance, so that lines com-
ing from the interior surface may meet the glass screen as
parallel lines. If a tracing of the various objects on the
surface of the sphere be made upon the glass, the result will
be an orthographic projection of the hemisphere.

If now, through a similar screen, a kollow hemisphere be
viewed, which touches the glass at its circumference, the eye
being placed at a distance from the glass equal to the radius
of the sphere, will now look into the hemisphere, and if
the objects be traced where they appear upon the screen, the
result will be a stereographic projection of the hemisphere.
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Crystal maps so lIln‘oduced convey a good deal of infor.
mation which can hardly be represented in the ordinary
perspective figures, and they greatly facilitate calculations in
the higher branches of crystallography.

26. Zone-circles.—These maps are of great service in illus-
trating the relative situations of the zone-circles, as is shown
in fig. 29, which is a representation of the principal zones
of the cubical system. The construction of the-figure is
evident: o, o0, 0,, etc., are the poles of the octahedral faces;
a, a, a,, ete., those of the faces of the cube; and d, d, d,, those
of the rhombic dodecahedron. The zones are represented
by the lines, and it will be seen that the planes a,, etc., are
common to no fewer than four zone-circles.

a
ds
\/
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a
&
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\
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Fig. 29.

2%, Sphere of Projection.—The situation of the poles on
the “sphere of projection” may be realised by considering
the figure as an ordinary school globe. The points a, and
a; will then represent the north and south poles respectively,
and the circle a, d, a, d, a, the equator. If the line joining
the poles be regarded as the meridian of Greenwich, d, will
be longitude 45° E., and d, longitude 45° W. The points
dy dy d§ and dg d, d;, will be respectively in 45° N. latitude,
and 45° 8. latitude, In this manner it is quite clear that
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the -latitude and longitude of all normals (Art. 18) may be
readily laid down, and their relations at once determined by
means of spherical trigonometry. The angles of the normals
once known, those formed by the various planes with each
other are the supplements of these angles.
28. Crystal Nets.—In the absence of ordinary models
the student will find much advant-
f age 1n the construction of models of
(—a- cardboard, by means of what are
known as crysial nets.* TFor this
purpose the surface of the required
figure is drawn upon paper or card-
board, this is then folded into the
required form, and fastened with
glue. Fig. 30 is the net for an
octahedron, the axes of which are
Fig. 80.—Ner For 4" in length; fig. 31 is a, net for a

OCTAHEDRON. cube with axes of the same length.

In converting such nets into models, they should be ac-
i curately drawn on cardboard.

7 The lines @ a @ @ should then

& oA be cut half-way through the

card, from one side (after

- cutting out the figure ac-

’ || curately), a’a’ @’ half through
¢ a @ a| from the opposite side. The
2 model may then be folded into

complete figure. A very in-

L’ o structive model may be con-
f structed as follows: a net of
Sk cardboard, like fig. 30, is

carefully cut out, folded, and
gummed, into a complete
octahedron; a cube of glass is
now prepared, the sides being

Fig. 81.—NEgt For CUBE. made of " squares of thin
glass, This is built up outside the octahedron, as in fig. 32.
This compound figure shows the situation of the primary

* A complete set of ‘“nets” for the mm&le forms of crystals has
been prepared by Mr. J. B, Jordan, of the Mining Record Office.
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octahedron within the cube, and the situation of the axes in
both figures. A similar re-
presentation of the rhombic
dodecahedron within the
cube is given in fig. 33.

Occasionally similarfaces
of crystals are indicated by k= L
a similar mode of shading, Fig. 32. Fig. 33.
and this plan has been adopted by Mr. Rutley. A less
confusing mode is to indicate the faces by their proper
symbols, or else by letters.

13— c




CHAPTER V,

FORMS (Continued)—HOLOHEDRAL FORMS OF THE
CUBICAL SYSTEM.

29. In this system the axes are at right angles, and the
parameters equal. The several forms in this system are 13
in number, 7 being holohedral, having the general sign 4 % ¢
in Miller’s system; 4 hemihedral, with inclined faces, having
the general sign « 2 %/, and 2 hemihedral, with parallel faces,
with the general sign 74 %7 In the present chapter the 7
holohedral forms will be defined.

30. The Octahedron (Regular Octahedron, fig. 34).—
Symbol, 111 Miichell and Miller ; O Naumann. This is
the simplest form in the system, as the three parameters are
not multiplied or divided in any way, but are met at normal
distances from the centre of the crystal by a series of planes
which together compose the complete form, the axes joining
the solid angles.

Fig. 34. Fig. 35. Fig. 36.

The regular octahedron is bounded by eight equal equi-
lateral triangles, the planes forming with each other angles
of 109° 28",* the normals therefore being inclined 70° 32'.
In fig. 35 the proper modifications of the general sign 111

* 109° 27’ 3", more exactly.
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are placed over the indices of the four faces shown. The
complete symbol of the form will be 111, 11T 141, 11

111, 111. 111, 111,

The face 111 corresponds with a plane cutting the points
A.B.C, or g, b, ¢;, or any other parallel plane in fig. 13.
Similarly, the face 111 corresponds with A C-B, or any
parallel plane ; and so on with the other faces.

Naumann’s symbol is obtained by taking the initial letter
of the word octahedron to represent the primary form of the
system. The complete symbol might be written 000, to
harmonise better with the symbols of the other forms, but it
is always contracted to O. It should be observed that
Naumann’s sign applies to the whole form, and affords no
means of distinguishing between the several faces, unlike
Miller’s more scientific system, which supplies a general
symbol capable of modification, so as to indicate every face
of the form separately.

‘We may also remark in this place, that the order of the
three indices of Miller's symbols never varies, the first
always refers to the axis A —~A, the second to the axis
C — C, the third to the axis B - B, figs. 13, 14.

3l. The Cube (Hexahedron, ﬁO' 36). —Symbol, leo o
Mitchell, 100 Miller, 0w Nawmann, This form is
bounded by six equal squares, which consequently make
angles with each other, of 90° and of course the normals do
also. Each face meets one parameter at its normal distance
(1) from the centre, and is parallel to the two others, or as
may be said, cuts them at an infinite distance, d.e., not at all.
This fact is expressed by Miller's symbol, 100, as well as by
Mitchell's 1o 0, where the sign o stands for infinity, and
Naumann's ooOoo , where o stands for infinity, and O for
the parameter cut at its normal distance from the centre.
As already mentioned, Naumann's symbol applies to the
whole form, so that the order of its several portions is quite
unimportant. It mightindeed be written oo 00O or Ow w0, as
the only fact to be expressed is, that the planes each cut one
parameter at the distance (1), and are parallel to the other
two. The symbol, however, is always used as written
above, 00w .

8R. The Rhombic Dodecahedron, fig. 37.— Symbol,
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1leo Mitchell, 101 Miller, 000 Naumann, contracted to
w0 0. This form is bounded by twelve equal rhombs, its
faces making angles with each other of 120°, measured over
the edges, the normals being inclined 60°. The ratio of the
diagonals of the rhombs is as 1: ,/2 (1 to the square root of
2). The axes join the opposite four-sided solid angles, and
cach plane cuts two axes at the normal distance (1), and is
parallel to the third.

The rhombic dodecahedron is the Granatoid of Haidinger,
and the Granatohedron of Weiss; it is a characteristic form
of garnet,

Fig. 37. Fig. 38. Fig. 39.

33. The Three-faced Octahedron (¢riakis-octakedron, fig.
38).—Symbols, 11m Miichell, b b & Miller, mOO, contracted
to mO Naumann. It is bounded by twenty-four equal
isosceles triangles, and the axes join the opposite eight-
sided solid angles. Each plane cuts two axes at equal
and normal distances (1) from the centre ; but the third is
cut at a distance greater than (1), and less than (). The
third parameter sometimes only a little exceeds, sometimes
very greatly exceeds the other two, consequently the angles
meagured over the edges, from face to face, and the normals
of these, are different for different crystallised substances.

The variable quantity more than (1), and less than (),
ig indicated by the letter m, so that the symbol of each face,
or of the complete form, is as already given, 1lm. The
threefaced octahedron is like an octahedron upon which
three planes have been built up over each plane of the
original, hence the nmame. The thicker line around one
group of planes in the figure, shows the edges of the funda-
mental octahedron. An infinite number of varieties of this
form might exist, since 7 may be any quantity more than 1,
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and less than infinity. In fact, however, only 7 different
values of m have been observed in natural crystals. The
limits of the form are evidently the octahedron, as m becomes
smaller and finally equals 1, and the rhombic dodecahedron
as m becomes greater, and finally equals . The three-
faced octahedron was called Galenoid by Haidinger, because
it is a common form of galena. It also occurs frequently in
pyrites, and, with curved faces, in the diamond.

34. The Deltohedron (twenty-four faced trapezohedron
or tcositetrahedron, fig. 39).—Symbols, lmm Mitckell, hk k
Miller, mOm Nawmann. This form is bounded by twenty-
four equal trapeziums or deltoids, and the axes join the
opposite four-sided solid angles. Each plane cuts one para-
meter at normal distance (1), and the other two at distances
mm, greater than (1), but less than (0 ), and equal to each
other. As m approaches (1), the form approaches the
octahedron ; as m increases towards (w0 ), it approximates to
the cube. These forms are therefore the limits of the delto-
hedron. Of course the angles of faces and normals vary with
different substances. It is the Leucitoid of Haidinger, being
a characteristic form of leucite.* It also occurs frequently in

Fig. 41.

35. The Four-faced Cube (tetrakis-hexakhedron, fig. 40).
—Symbols, lmewo Mitchell, h k o Miller, Om Nawmann.
It is bounded by twenty-four equal isosceles triangles, and
the axes join the opposite four-sided solid angles. Each
plane cuts one parameter at normal distance, is parallel to a
second, and cuts the third at a variable distance (m) greater
than (1) and less than (). The limits of the form are the
cube, when m equals o, and the rhombic dcdecahedron

* It will be seen in a later chapter that there are reasons for sup-
posing that leucite is not a member of the cubical system,
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when it equals 1. As m is variable, the angles of faces and
normals are different in the different varieties of forms.
The fourfaced cube was called Fluoroid by Haidinger,
because of its frequent occurrence in the mineral fluor.
36. The Six-faced Octahedron (hexakis-octahedron, fig.
41). —Symbols, lmn Mitchell, h k I Miiler, mOn Nau-
mann. This form is bounded by forty-eight equal and
similar scalene triangles, the axes join the opposite eight-
sided solid angles. Each plane cuts one parameter at its
normal distance (1), a second at a distance (m) greater than
(1) and less than infinity, and a third (n) greater than
(m) but still less than infinity. When = equals m the delto-
hedron results; when n becomes <o the four-faced cube is
produced. These two forms are therefore the limits of the
six-faced octahedron. It may be considered the most perfect
form of the cubical system, as it contains all the possible
arrangements of + k& + % + [ taken three at a time. It is a
characteristic form of the diamond, and was for this reason
called Adamantoid by Haidinger.
37. Poles of the Cubical System.—The projection of the
poles of the “normals” to the
€1 several faces of the cubical system
are given in flg. 42, which is an
g octant of the sphere of projection
given in fig. 29 ; o is a pole of the
s octahedron; @ @ are poles of cubical
faces; d d poles of the rhombic
dodecahedron, The poles of the

al s a, three-faced octahedron are variable
) i in situation, but fall on 0d ; those
Fig. 42. of the deltohedron on o @, of the

four-faced cube on & d, and of the six-faced octahedron within
the triangles.



CHAPTER VI

FORMS (Continued)—HEMIHEDRAL FORMS OF THE
CUBICAL SYSTEM.

38. THE meaning of the term * hemihedral” has already
been explained (See Art. 20). The hemihedral forms of the
cubical system are six in number; four having inclined faces,
and two paralle] faces. The hemihedral forms with inclined
faces are distinguished by the general symbol « % % 7; those
with parallel faces by the general symbol = A % 7.

389. The Tetrahedron, fig. 43.—Symbol, 11X Mitchell,
« 111 Miller, $ Naumann. This form is bounded by four
equal equilateral triangles, which are inclined to each other
at angles of 70° 32’ (nearly), the normals being inclined
109° 27’ (nearly). Its faces correspond in situation and
relation to the axes, with four alternate faces of the octa-
hedron, consequently the sign is the same, but written with
the sign of division by two, thus, 1* to indicate their hemi-
hedral character. In Miller's system this is sufficiently in-
dicated by the sign x. The axes join the central points of
opposite edges.

Fig. 43. Fig. 45.

The tetrahedron may be very simply derived from the
cube, as shown in figs. 44 and 45, where 45 is negative and
44 positive. If a crystal be simply a perfect tetrahedron, it
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; s
cannot properly be described as either positive or negative;
but occasionally faces of both the tetrahedrons occur in the
same crystal developed to a different extent. In such cases
the negative faces are indicated by prefixing the negative
sign, thus, —22*, Similar positive and negative forms exist
for the other hemihedral forms. It is evident that the
octahedron may be regarded as a combination of the positive
and negative tetrahedrons equally developed. The tetra-
lbuidron occurs in fahlerz (hence called Tetrahedrite) and in
ende.

40. The Trigonal Dodecahedron (three-faced tetra-
hedron), fig. 46.—Symbol, =™ Mitchell, « b k k Miller, ™"
Naumann. This form which is bounded by twelve equal
isoceles triangles is the hemihedral form of the deltohedron
(fig. 39); its planes corresponding with alternate groups of
three faces of that figure. The axes join the central points of
the longer edges. The limits of the form are the tetrahedron,
when m equals 1, and the cube when m equals co. It is a
form of frequent occurrence in blende and faklerz.

olv

Fig. 46. Fig. 47. Fig. 48.

41. The Deltoid Dodecahedron (twelvefaced trapezo-
hedron), fig. 47.—Symbols, 2 Mitchell, « h b k Miller, =2
Nowmann. This form is bounded by twelve equal deltoids
or trapezoids ; its faces correspond with alternate groups of
faces of the three-faced octahedron (fig. 38). % The axes join
the opposite four-sided solid angles. Its limits are the tetra-
hedron and the rhombic dodecahedron, as m approaches 1 or
w. It occurs frequently in blende and fahlerz.

42. The Six-faced Tetrahedron (kexakis tetrahedron),
fig. 48.—Symbols, 2= Mitchell, « b k § Miller, "2* Nawmann.
This form is bounded by twenty-four equal scalene triangles,
which correspond with alternate groups of six of the six-
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faced octahedron (fig. 41). Its axes join the opposite four-
sided solid angles. ' The limits of the form are the trigonal
dodecahedron and the deltoid dodecahedron. Good examples
occur sometimes in boracite.

43. In the four hemihedral forms just described, no face
is parallel to any other face. They are often found in
natural crystals combined with some of the forms previously
described, but never with the two forms, with parallel faces,
now to he described.

44. The Pentagonal Dodecahedron, fig. 49.—Symbols,
= Mitchell, = b k o Miller, =9 Noumann. This form is
bounded by twelve equal pentagons, corresponding in situa-
tion with alternate planes of the four-faced cube. The axes
join the central points of the opposite longer edges. The
limits of the form are the rhombic dodocahedron and cube, as
m equals 1 or oo. Tt is sometimes called Pyritoid, because
it is a characteristic form of iron pyrites and cobalt pyrites
(cobaltite).

Fig. 49. Fig. 50.

45. The Trapezohedron (irvegular twenty-four faced
trapezohedron), fig. 50.—Symbols, [22] Mitchell, = h & Miller,
o Nawmann. This figure is bounded by twenty-four equal
trapeziums, The axes join the opposite equi-angular four-
sided solid angles. Like the six-faced tetrahedron, fig. 48,
it ig the hemihedral form of the six-faced octahedron, fig. 41;
but it is derived according to a different law. In the former
the planes 7 correspond with alternate groups of the
planes lmmn, in the latter with alternate planes lmn. The
slopes of the planes, however, correspond in both cases with
those of the six-faced octahedron ; to distinguish this figure
from the six-faced tetrahedron, fig. 48, the sign is written in

brackets, thus, ["3%] Mitchell, or [*%] Nawmann.
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“ The limits of form for the cubical system are as follows:—

a: The octahedron, when m and n=1.

6. The cube, when m and n = oo.

¢. The rhombic dodecahedron, when m =1 and n= co.

d. The three-faced octahedron, when m =1 and » is more
than 1 and less than oo,

e. The deltohedron, when m and # are equal, more than 1,
and less than oo.

J- The pentagonal dodecahedron, when m is more than 1
and less than oo, while » becomes .



CHAPTER VIIL

FORM (Continued)—COMBINATIONS OF FORMS IN THE
CUBICAL SYSTEM.

46. Or the thirteen distinct forms of crystals described in
the preceding chapters, the planes of several are often
combined in one crystal, so as to produce what are called
modified forms or combinations. Such modified forms are
indeed much more commonly met with in nature than are
the simple forms themselves.

In the figures illustrating combinations, the same letters
always indicate similar planes, so that the student will have
little difficulty in tracing the relations of the various forms.

477, CoupiNaTioNs OoF Fixep HoroHEDRAL Forus WITH
EACH OTHER.

Tig. 51. Fig. 52. Fig. 53.

Octahedron and Cube, figs. 51 and 52. The planes o are
those of the octahedron, ¢ those of the cube. It will be
seen that the slopes or inclinations of the corresponding
planes are alike in both figures; they have the same situation
with respect to the axes, and the same inclinations to each
other. The octahedral planes in fig. 51, hewever, are not
triangles but irregular hexagons, nor are the cubical planes
square in fig. 52, as in the simple forms. From this we
learn, that, except in the simple forms, the shape of the plane
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is quite unimportant, while its slope or inclination, as re-
ferréd to the axes, is really its essential character.

The signs used to denote combinations are those of the
simple forms which enter into the combination, placed one
after the other; those of the larger planes first. The sign of
fig. 51 will therefore be 1.1.1, 1. 0. o0; that of fig. 52,
1. . o, 1.1.1; the cubical sign being in this second instance
Placed first because the cubical faces are the largest.

Octahedron and Rhombic Dodecahedron, figs. 53 and 54,
the dodecahedral planes being indicated by the letter d. The
sign of the combination will be, for fig. 53, 1.1.1, 1.1. o ;
for fig. 54, 1.1. oo, 111.

Fig. 54. Fig. 55.
Cube and Rhombic Dodecahedron, fig. 55, 1. oo. o0, L.1.0 ;
fig. 56, 1.1. oo, 1. oo. 0.
Cube, Octahedron, and Rhombic Dodecahedron, fig. 57,
1. co. o0, 1.1.1, 11 co.

Fig. 58.

48. COMBINATIONS OF VARIABLE WITH FIXED HOLOHEDRAL
Fornms.

The combinations above described are combinations of
forms whose angles are fixed, the parameters being either 1
or oo, 50 that no variable elements are introduced. We
have now to describe combinations in which the parameters
are sometimes variable, m or m, so that a great variety of

-
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forms is possible according to the values of those variables.
The illustrations given apply to modifications in which m or
n have medium values. The octahedral, cubical, and delto-
hedral planes are indicated as before by the letters o, a, and
d, respectively, n indicates the planes of the deltohedron, %
those of the three-faced octahedron, ¢ those of the six-faced
octahedron, and e those of the four-faced cube.

Qctahedron and Deltohedron, figs. 58, 59, 60. In fig. 58
the octahedral planes are largely developed, so that the sign
will be 111, 1mm. In fig. 59 the deltohedral planes are
larger, and the sign will be reversed. Fig. 60 is a peculiar
form, having its planes about equally developed so as to pro-
duce a figure having a quite different aspect, with thirty-two
triangular faces. The triangles o are equilateral, the others
are usually isosceles. The sign may be written either way.
A figure of very similar general appearance, but fewer planes,
may result from a peculiar development of the octahedron and
pentagonal dodecahedron, as will be shown further on (fig. 78).

Octahedron and Three-faced Octahedron, fig. 61, 111,
11m ; fig. 62, 11m, 111.

Octahedron and Six-faced Octahedron, fig. 63, 111,
1lmn ; fig. 64, lmn, 111.

Octahedron and Four-faced Cube, fig. 65, 111, 1m oo,
fig. 66, 1mew , 111.

Cube and Deltohedron, fig. 67, lwco, lmum; fig. 68,
Imm, 1o .

Cube and Three-faced Octahedron, fig. 69, 1o 0, 11m ;
fig. 70, 11m, 1o 0 .

Cube and Six-faced Octahedron, fig. 71, lwweo, lmn;
fig. 72, 1mn, loo .

Cube and Four-faced Cube, fig. 73, 1o 0o, lm=  fig.
74, Imw, 1o 0.

Rhombic Dodecahedron and Deltohedron, fig. 75, 110,
1mm ; fig. 76, lmm, 110 .

Rhombhic Dodecahedron and Three-faced Octahedron,
fig. 77, 110, 11m; fig. 78, 11m, 11co.

Rhombic Dodecahedron and Six-faced Octahedron, fig.
79, 118, 1mn; fig. 80, 1mn, 11c.

Rhombic Dodecahedron and Four-faced Cube, fig. 81,
11w, 1mw ; fig. 82, 1mw, 11w,
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49. Complex Combinations.—A careful study of the fore-
going examples will enable the student to read almost every
possible holohedral combination in this system with facility,
and it will be good practice for him if he will devise for
himself other combinations than are here given. An ex-
ample of the very complicated forms which are sometimes
met with is given in fig. 83, which represents one corner of a
crystal of fluor, from Mr. Turner’s collection. The crystal
had in all one hundred and fourteen faces. The signs of the
faces are as follows : j

a=1ww =100
d=11lw =110
n=1mm =133
k=11m =112
s=lmn =124

Actual measurement of
the faces enabled Levy to
assign the numerical values
to m and n, given in the
third column. A still more
complicated form is shown
in fig. 84, which represents
a crystal of fluor from Bee-
ralstone, in Devon, which
formed part of Mr. Phillips’
collection.  This crystal
if complete would have had
three hundred and thirty-
eight faces. One corner
only is drawn in the figure,

a = lon
o= 111
d = 1llo iy
n = lmm
e, = } 1mw, m having different values
€= in each case.
=
52= | 1mn m and n having different
23 5 values in each case.
4
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50. CoMBINATIONS OF HOLOHEDRAL WITH HEMIHEDRAL
Forus.

Octahedron and Pentagonal Dodecahedron, fig. 85,
111, ==; fig. 86, %=, 111. In fig. 87 the two sets of
pla.nes are aboub equally developed, and the result is a figure
bounded by eight equilateral triangles and twelve isosceles
triangles, and havmg the same sign as fig, 85. It has a
superficial resemblance to fig. 60, but has only twenty in-
stead of thirty-two planes.

Octahedron and Irregular Trapezohedron, fig. 88, 1.1.1
mr) ; fig. 89, 2+, 111,

*Cube and Tetrahedron, fig. 90, lww, ¥, and fig.
91, %, low.

Cube and Three-faced Tetrahedron, fig. 92, lww,
e fig, 93, 27, leo .

Cube and Deltoid Dodecahedron, fig. 94, lwwco, *;
fig. 95, 2, lo 0.

Cube and Six-faced Tetrahedron, fig. 96, 1o 0, 77;
fig, 97, I7», 1o co0.

Cube and Irregular Trapezohedrom, fig. 98, lww,
[t22]; fig. 99, [%7], loo 0.

Cube and Pentagonal Dodecahedron, fig. 100, lwco,
Be; fig. 101, 72, 1o 0.

Rhombic Dodecahedron and Tetrahedron, figs. 102
and 103, 110, 2t; fig, 104, 2 — 1lco.

Rhombic Dodecahedron and Deltoid Dodecahedron, figs.
105 and 106, 1l , 2 fig. 107, - 110, .

Rhombic Dodecahedron and Three-faced Tetrahedron,
fig. 108, 11eo, ™m; fig. 109, 2=, 1leo; fig. 110, =7 1lco.
In the last ﬁgure the value of m is greater than in the
other two, so producing a peculiarly-formed crystal.

Rhombic Dodecahedron and Six-faced Tetrahedron,
fig. 111, 110, 7#; fig, 112, 7%, 11e0.

Rhombic Dodecahedron and Pentagonal Dodecahedron,
fig. 113, 110, 2= ; fig. 114, 7=, 110,

Rhombxo Dodecahedron and Irregular Trapezohedron,
fig. 115, 11e0,[™]; fig. 116, 7], 11c0.

18—1 D
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Tig. 107. Tig 108,
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51, CompiNaTiONS OF HEMIHEDRAL FORMS WITH EACH
OTHER.

Positive and Negative Tetrahedroms, fig. 117, 2, -2
When the positive and negative planes become equal, the
result is an octahedron, which may therefore be regarded as
a combination of the two tetrahedrons.

Tetrahedron with Three-faced Tetrahedron, fig. 118,
o, 57 fig 119, e 11 fig, 120, 1Y, - Imms fig, 121, W
fig. 122, Inm 11 LD,

Tetrahedron with Deltoid Dodecahedron, fig. 123, 12, u~;
fig. 124, I, 5 fig, 125, um, 1t

Tetrahedron with Six-faced Tetrahedron, fig. 126, 2=, 1t
fig, 127, 7 -1,
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52. A complex form occurring in fahlerz is given in fig.

128, where 0 =1, n="2", d=1lw.

A still more complex form
which occurs in the same
mineral is given in fig. 129.
The signs are as follows :—

=3
-
-

O== Fudn
¢ = lwoow ;
pl=-1ig% =192
n =41z =122
e = lmowo =130
k= —1n =118
.1 2
Fig. 129. d = ll»

53. Platonic Bodies.—These are the only regular solids
which can be formed, <.c., the only bodies which are bounded
by equal, similar, regular, and rectilineal figures. They are
five in number, viz. :—

The tetrahedron, bounded by four equal equilateral triangles.
The cube, bounded by six equal squares.
The octahedron, bounded by eight equal equilateral triangles.

The pentagonal dodecahedron, bounded by twelve equal regular
pentagons.

The icosahedron, bounded by twenty equal equilateral triangles.
The first three of these forms are common among natural
crystals, but the two latter have not been observed. Figs.
49 and 87 sometimes afford a near approach to them, but the
bounding planes are not equilateral pentagons and triangles,
respectively.
b4. The series of figures of cubical forms and combina-
tions might be very much extended, but it will be found
abundantly sufficient by every careful student. A few more
remarkable combinations will be given when the minerals in
which they occur come to be described.
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FORM (Continued)—THE TETRAGONAL OR PYRAMIDAL
SYSTEM.

55. Axes.—In this system there are three axes as in the
cubical, and they are also placed at right angles to each
other, but they are not equal in length, one being longer or
shorter than the other two. This is called the principal
axis, the two that are equal are lateral axes.

56. Angular Elements.—The angle made by the principal
axis with the normals (Art. 18) to the planes of one of the
chief pyramids (usually the square pyramid of the so-called
second order, figs. 133, 134), occurring in any natural
substance crystallising in this system, is called the angular
element of that substance.

Thus, if ¢ ¢, fig. 130, be the principal axis ¢
and ¢ x a plane of the chief pyramid, then

n %' will be a normal to that plane and the ‘
angle ' n ¢ will be the angular element. e
With an angular element of 45° the planes =

of the chief pyramid of the first order in this T

system would coincide with those of the regular
octahedron of the cubical system. This angle
has not actually been met with in nature, but
chalcopyrite has an angular element of 44°31/, ¢

so that some of its forms are scarcely dis- Fig. 130.
tinguishable from those belonging to the cubical system.
The principal pyramids of the minerals anatase, nagyagite,
and matlockite, are very acute, the angular elements being
about 60°. Very obtuse pyramids are met with in cas-
siterite, rutile, scapolite, and zircon, while the chief pyramid
in idocrase is so obtuse that its angular element is only 28°9".
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With a few exceptions the perspective figures illustrating this
chapter are those of crystals with medium angular elements.

97. HoroneprAL Forus—Pyramins. The only complete
holohedral forms in the pyramids % % Zin which all three
signs are finite, 7.e., less than co. They are of three orders,
as follows :—

1st. The Tetragonal Pyramid, of first order, figs. 131, 132.
——Symbols, 111 Autchell, 111 or kbl Miller, P. Naumann.
These are bounded by eight
equal ¢sosceles triangles.
They are therefore octa-
hedrons, but differ from
the regular octahedrons,
fig. 15, in which the planes
are equilateral triangles.
In fig. 131 the principal
axis [ — /is longer than the
lateral axes h—h, k—F.
Fig. 132, TIn fig. 132 it is shorter.
The edges terminating at the principal axes are termed
polar, those which only connect the lateral axes are lateral.

Fig. 133. Fig. 134. Tig. 135.
2nd. The Tetragonal Pyramid, of second order, figs. 133,
134, — Symbols, 1 1 Mitchell, 101 or hol Miller, Powo
Noumann. These do not at all differ in appearance from the
pyramids already described, but only in the situation of tho
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lateral axes, as shown in the figures. Fig. 135 isa plan or end
view of these two orders of tetragonal pyramids, the completed
lines showing the situation of the lateral planes in the pyramid
of the first order, the dotted lines those of the second order.

Fig. 136. Fig. 137.

3rd. The Ditetragonal Pyramids, fig. 136.—Symbols, 11
Mitchell, b k1 Miller, m P n Nawmann. These pyramids are
bounded by sixteen equal scalene triangles. The origin of
these pyramids will be understood from a consideration of
fig. 137, which is a plan of the crystal showing the lateral
axes h—h, k—%k. It will be seen that each face would, if
produced, cut the prolonged parameters at points  « beyond
h—h, k—k This distance o «;, which is always greater than
ohorok, is denoted by the symbol 7, consequently the
symbol of the form will be 1ml. In the figure oz =twice
o h, consequently m = 2, and the particular symbol of the form
will be 121. In these pyramids m may have any value
greater than 1 and less than o, as indicated in fig. 138,
which also shows the situation of the axes in tetragonal
pyramids of the first and second orders. Here AAAA
ave faces of the pyramid of first order, symbol 111 ; BB,
etc., are faces of pyramids of the second order, symbol 1eo 1;
CC ete., faces of the ditetragonal pyramid, with the symbol
1211; oo. are faces of other ditetragonal pyramids, with
the symbols 1141, 121, 131, 141, respectively, as in-
dicated by the dotted lines. From this figure it is evident
that the number of possible ditetragonal pyramids is infinite,
m having all possible values between 1 and «, the limits of
the pyramids of first order and second order. In the case
when the parameter m is 24, as shown in the figure at CC
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ete., the angles at dd are nearly equal to the angles at 7 1
or #1, and the sixteen bounding planes of the form are
scalene, but scarcely differ from <sosceles triangles.

In this
case the form may be mistaken for a combination of the
pyramids of the first and second order, with the symbol
111 + 1o 1.

=
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=
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Fig. 138.

58. Derivative Pyramids.—From each of the pyramids

described in Art. 57, others are derived by increasing or

diminishing the principal axis, the lateral axes remaining

unaltered, as shown in fig. 139, which represents a series of
three pyramids of the first order, all relating to the same
series of axes.

The primary pyramid A is inclosed in
another more acute, @ 2, in which the principal axis is
doubled. It also incloses a more obtuse pyramid, @ %, in
which the principal axis is reduced one-half. The symbol of
A is therefore 111, that of a2 is 112, that of o}, 111
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The general symbol, expressing the whole series, will there-
fore be 11m Mitchell, bl Miller, mP Naumann. Similar

pyramids may exist of the second order
with the general symbol 1w m Mitchell,
kol Miller, mP oo Naumann, all being
derived in a similar way. These are also
derived ditetragonal pyramids with the
general symbol lomaz.

59. HoronEDRAL ForMs—Prisms. These

also are of three orders corresponding with
the pyramids already described :—
+ 1st. Tetragonal Prism, of first order, fig.
140.—Symbols, 11w, o w 1 Mitchell, 110,
001 Miller, P, 0P Naumann. This
prism is shown in the figure in relation
to its corresponding pyramid, which is en-
closed by it. It is also represented by
the lines AAAA,, in fig. 138.

2nd. Tetragonal Prism, of second order,
fig. 141.—Symbols, 1o w0, oo a0l Mitchell,
100, 001 Miller, wPw, 0P Naumann.
This is shown in relation to its correspond-
ing pyramid in fig. 141, and to the pyramid
of first order in fig. 142. These prisms of
first and second orders, like the correspond-

21

=21
Fig. 139.

ing pyramids, differ only in the situation of the lateral axes.
In both, the principal axis joins the central points of the

top and bottom planes called the basal
planes or basal pinacoids. The positions
of the lateral axes are clearly shown in
the diagrams. BBBB, fig. 138, indicate
the planes of the prism of second order.
3rd. The Ditetragonal Prism, fig. 142a.
—Symbols, 1mw , o ol Mitchell, hk o,
001 AMiller, =P mn, 0P Naumann. This
prism, like the others, is shown in relation
to its corresponding pyramid. When m
equals 21, the base of the prism scarcely
differs from a regular octagon, when the

Fig. 140.
form may be mistaken for a combination of the square prisms
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of the first and second order. Unlike the pyramids, which are
complete in themselves, these prisms are open or incomplete
forms, as the length of the principal axis is in no way in-
dicated by their symbols. The planes at top and bottom are
not included in the ¢ form,” but have a separate symbol of
their own, viz.: oo w0l Mitchell, 001 Miller, or OP Naumann.

Fig. 141. Fig. 142. Tig. 142a.

60. ORDER AND SIGNIFICANCE OF SyMBoLS.—The student
must bear in mind that in this and the following systems the
three portions of each symbol, as 111 or lewo 1, refer not only
to their corresponding parameters in regular order as ex-
plained in Art. 30, but they refer here, and in the systems
yet to be described, to parameters which are not equal to
each other as in the cubical system. Thus, the symbol 111
does not imply that the first, second, and third parameters
are equal, but that they are respectively undivided or not
multiplied. In 11§, forinstance, the £ of the third parameter
may be greater, absolutely, than the 1 of the first or second
parameters : it simply implies that the face in question cuts
the third parameter at three-fourths of its own proper length.
This fact must ever be borne in mind,
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FORM (Continuedy—THE TETRAGONAL SYSTEM—
HEMIHEDRAL AND TETARTOHEDRAL* FORMS.

61. From each of the forms just described, with the ex-
ception of the prisms of first and second orders, hemihedral
forms are produced by the development of one-half the faces.

The hemihedral forms with inclined faces are “sphenoids” t
(irregular tetrahedrons), trapezohedrons and scalenohedrons ;
those with parallel faces arve four-faced pyramids, differing
only in the situation of the axes from the holohedral
pyramids of first and second orders.

62. Hemihedral Forms of Tetragonal Pyramids.

In the following figures, 143 to 226, faces parallel to the
pyramids of the first order, 11m =A% =m P, are lettered (a).

Faces parallel to the pyramids of the second order, 1 oo m =
hol=Pw, are lettered (b).

Faces parallel to the ditetragonal pyramids, lmn=hkl=
mPn, are lettered (c).

Prisms of first order, 110 =110= P, are lettered (m).

Prismsof secondorder,lco o0 =100 = oPw , arelettered (n).

Ditetragonal prisms, lmwo =hko= P =, ave lettered (g).

The basal plane, o 1 =001=0DP, is lettered (o).

(1.) Sphenoids derived from pyramids of first order, fig.
143.  Symbols, I or ¥ Mitchell, % or “F Naumann, ¢111
or xhhl Miller. The mode by which this sphenoid is
derived from the pyramid is shown in fig. 144, which repre-
sents the pyramid within the sphenoid. Fig. 145 shows its
derivation from the corresponding square prism. Fig. 146
shows the derivation of the corresponding negaiive sphenoid
—chhl

* reragros (tetartos), fourth, and £pz.
+ spwes (sphenos), a wedge, and «dos.
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(2) Sphenoids derived from pyramids of second order, fig.
147, symbols '2* or 2™ Mitckell, = or 2= Nawmann, chol
Miller. TFig. 148 shows the mode by which it is derived
from the pyramid lew m, and fig. 149 its relation to the cor-
responding square prism leow. Fig. 150 is the negative
sphenoid —x 2o L

63. Hemihedral Forms of the Ditetragonal Pyramid.—
These are of several kinds according to the special law of
development in question. In order to make these plain we
will represent the eight upper planes of the ditetragonal
pyramid, fig. 151,* the symbols ¢, ¢, - - - - - ¢g and the eight
lower planes by the symbols ¢’ €y - - - -- ¢ The various
hemihedral forms will then be as follows : —

(1.) The tetragonal scalenohedron, fig. 152. Symbols, 72
Mitchell, ™22 Nawmann, & b % I Miller. This is produced by
the development of the planes e, e,, €' €'y, €, €€’y €5, This is
the positive scalenohedron, by developing the remaining faces
instead of those mentioned, the negative form « £ 4 I will result.

(2.) A very similar form, differing mainly in the situation
of the axes, is produced if the planes ege,, €', €', ¢, ¢;, €/ ¢y
are developed.  Mitchell and Nauwmann’s symbols are the
same as for the preceding figure, but Miller distinguishes it
by the sign A 2% /. The corresponding negative form is \% 7 L.

(3.) The pyramidal trapezohedron, fig. 153, is produced by
developing the faces e, e; ¢, ¢, ¢, ¢, €5 ¢, No special
symbols are given by Mitchell or Naumann, but Miller's
i8 a kb & 1 for the positive form and « £ % ! for the negative.

The three forms just described are hemihedral with
inclined faces; a hemihedral form with parallel faces remains
to be described.

(4.) The hemihedral double four-faced pyramid, which
differs from the holohedral pyramids of first and second order
only in the situation of the axes, is produced by developing
the faces e, ¢, ¢, ¢, €', €', €5 €y Mitchell and Naumann have
no special symbols for these pyramids, but Miller’s are wh k1
for the positive, and « & 4 7 for the negative.

64. Tetartohedral Forms of the Ditetragonal Pyramid.
—The hemihedral double four-faced pyramids just described

* Only a few of the letters are put in, for the sake of clearness,
and for the same reason the principal axis is omitted.
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Fig. 153. Fig. 154.
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themselves admit of a hemihedral development, so producing
sphenoids of only one-fourth the original number of faces.
It is however doubtful whether these sphenoids have been
observed in nature. They would differ from the sphenoids,
figs. 143, 147, only in the situation of the axes.

65. Hemihedral Forms of the Ditetragonal Prism.—
Symbol, 2=, These will be square prisms differing from
those of the first and second orders only in the situation of
the axes. Fig. 135 shows the situation of the lateral axes in
the prism 1l and lw oo ; fig. 154 their situation in the
ditetragonal prism lmw ¢, ¢;- - - - - ¢g, and the positive hemi-
hedral square prism *2= 4, 4, ¢4 ¢, produced by developing the
faces ¢, ¢, ¢; ¢;.  The negative prism — 2= is produced by
developing the remaining faces.

66. Sphere of Projection of the Tetragonal System.—
-k This is shown in
fig. 155, the con-
struction of which
is evident.  The
centre (o) is the pole
of the basal planes

o owl. The poles
of the faces of the
- T pyramids of first
¥ order 11m, will fall
on the lines o, oz,,
0%, o0, mMOre or
less distant from o
according to the
greater or less angu-

4 lar element of the
k crystal in question,
Fig. 155. the “latitude” being
equal to the “ angular element.” The poles of the planes of
second order pyramids, 1oo m, will fall on the lines 0 A, 0 — &,
ok, o—Fk in the same manner; those of the ditetragonal
pyramids, 1nm, will fall in the triangles. The poles of the
prisms 110 will be at a; x, 2, 2, those of the prisms 1o e
at k&, — h, &, — k ; those of the ditetragonal prisms 1nw on the
line %, @, %, etc., and between the points marked.
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FORM (Continved) ~-HOLOHEDRAL COMBINATIONS OF THE
TETRAGONAL SYSTEM.

67. Combinations of Pyramids with each other.—(1.)
Combinations of pyramids of the same order (derived
pyramids). These will be understood by a reference to fig.
156, which represents a combination of the three pyramids
like those shown in fig. 139. The faces of the primary
pyramid are in both figures indicated by the letter A, those
parallel to the acute pyramid by a,; parallel to the obtuse
pyramid by a}. Other combinations of pyramids of the
same order are also given in figs. 157, 158, in which A = the
pyramid 111, @ the pyramid 11m. v

(2.) Combinations of pyramids of different orders. Fig.
159 shows a combination of the pyramid of the first order
a (11m), with the tetragonal pyramid of second order and
different slope leo m. In fig. 160, a is the pyramid 11m, ¢
the ditetragonal pyramid lmm; fig. 161 is a combination of
the pyramids 1nm (c) and 11m (a); fig. 162 is 11m (a) with
leco m (b), in which b is a pyramid of different altitude to a
(i.e., m has different values in the two cases).

68 Pyramids with the Basal .Plane.—Figs. 163, 164,
show combinations of incomplete pyramids, with the basal
pinacoid 0. The symbol of fig. 163 is 11m (a), ® » 1 (o), of
fig. 164, 1nm (c), 0 o 1 (o). '

69. Combinations of Pyramids with Prisms.—(1.) Com-
binations of pyramids and prisms of the same order. Ex-
amples are given in figs. 165 and 166, where @ is the
pyramid and m the prism. The figures represent combina-
tions of forms of the first order, but with a slight change
of position would equally represent those of the second order:

13—1 E
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* (2.) Combinations of ditetragonal pyramids and prisms are
given in figs. 167, 168, where ¢ is the pyramid and ¢ the
“prism. :

(3.) Combinations of prisms of different orders. Tig. 169
is the prism of first order 110 (m) combined with the prism
of the second order lw oo (n); fig. 170 is prism of first
order 11w (m), with ditetragonal prism lnw (¢). FEach
shows the basal plane o o1 (o).

Figs. 171, 172 represent the pyramid of first order (a) with
prism of second order (), the symbol being 111, 1eo .

Fig. 173 is the pyramid of first order (), with ditetragonal
prism (g), having the symbol 111, 1nw.

Fig. 174 is a ditetragonal pyramid (c) and ditetragonal
prism (¢). The symbol is 1nm, 1n'w, as the » has different
values for pyramid and prism, it is in the latter distinguished
by an accent.

Fig. 175 is the ditetragonal pyramid (c) and square prism
of first order (m), with the symbol 1nm, 11w .

Fig. 176 is the pyramid of first order («), of second order
(0), and prism of first order (m), the symbol being 111,
lol, 11eo.

Fig. 177 shows the similar planes, except that b is 1o m,

Fig. 178 shows the pyramid of first order (a), the dite-
tragonal pyramid (¢), and the prism of second order (%), with
the sign 111, 1nm, 1o . .

Fig. 179 is a more complex form, showing pyramid of first.
order (a), of second order (b), prism of first order (m), of
second order (), and the ditetragonal prism (g), with the
basal plane (o). The symbol will be 111, w0 1, 11w, leo w0,
lnw, ool ;

Fig. 180 is still more complex, containing pyramid of first
order (a), two pyramids of second order (b) and (?), dite-
tragonal pyramid (¢), square prism of first order (m), and
second order (n), with ditetragonal prism (g), and basal
plane (o). The complete symbolis 111, 1w 1, 1 com, 1nm,
110, 1o 0, 1nw, o0 ool,

Fig, 181 shows pyramid of first order (@), two pyramids
oof second order (b) and (%'), ditetragonal pyramid (c), prism
of first order (m) of second order (n), ditetragonal prism g¢.
Symbol 111, 1o 1, 1wom, 1nm, 11w, 1o o, 1nw.
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Fig. 166,

minym n

Tig. 169,
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Fig. 187. Fig. 188.
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Tig. 189. Fig. 190. Fig. 191. Fig. 192,

Fig. 193. Fig. 194, Fig. 195.

Fig. 197. Tig. 198. Fig. 199.
Fig. 201. Fig. 202. Fig, 203, Fig. 204,

I

Fig. 205. Fig. 206, Fig. 207. Fig. 208. .
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Fig, 182 shows three pyramids of first order (a) (a') (@),
pyramid of second order (b), prism of second order =, the
symbol is 111, 11m, 11m’, 1oo m, 1o 1. :

Fig. 183 shows pyramid of first order (&), ditetragonal
pyramid (c), prism of first order (m), of second order (n), with
the symbol 111, 1nm, 11w, 1o w,

Fig. 184 is a very complex erystal of idocrase, described
by Mohr, having the following faces :

e =111 b=1lwl =14 m=1lwo q'=13»

@R=OT e =122 ¢”"=124 n =lwwo 0=ww®nl

a'=114 =133 ¢”"=13% ¢ =12=

70. Vertical Projection.—A very convenient mode: of
representing the planes occurring in minerals belonging to
this system is the vertical projection often adopted by
Professor Miller—a projection by lines parallel to the
principal axis on a plane perpendicular to that axis. A
series of holohedral figures drawn in this manner is given
from figs. 185 to fig. 208.

It will be observed that this mode of representing crystals
does not indicate the relative size or development of the
planes of prisms. The existence of planes of the prisms
can indeed only be indicated at all by the signs placed
around the figure, as in fig. 186; where, if the sign n did
not appear we should conclude that the crystal represented
was a pyramid only, without the prismatic planes.

In figs. 185 to 192 similar planes are lettered, the rest are
left a8 exercises for the student.

Up to fig. 195 the basal plane o 01 (0) does not appear,
after that all the figures to 208 show that plane.
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FORM (Continued)—HEMIHEDRAL COMBINATIONS
OF THE TETRAGONAL SYSTEM.

71. Combinations of Hemihedral Forms with each other.

(1.) The positive sphenoid % (a) with the negative sphenoid
- ('), fig. 209. The student will note how much this
figure resembles the combination, fig. 117, in the cubical
system. Where the “angular element” of the tetragonal
crystal in question approaches 45° as in chalcopyrite; it is
indeed impossible to distinguish the two forms without care-
11'1ul miasuremsnt. }}i‘ig..gl.o ;}s; the ia(rlne (iom‘téination, but

ere the negative sphenoid is the most developed.

((12.) 'fhe Iﬁozitive lsg)](le)ncgd %;gai), negative sphenoid - 4! (a'),
and scalenohedron X° (e), fig. ;

72. Combinations of Hemihedral with Holohedral Forms.

(1.) Positive sphenoid 5! (a) with the prism of first order
11 (m). This is less like fig. 209 than it appears here.

(2.) Positive sphenoid 7! (a) and prism of second order
1o o (n), fig. 213.

3) Positive sphenoid %" (a) with double four-faced pyra-
mid 1o 1 (b) fig. 214.

(4.) Iiyramidcof second order 1o 1(b) and negative sphenoid
- I» (@), fig. 215. ;

(5.; Pyramid of second order 1o 1 () and scalenohedron
nn (e), fig. 216.
2 »

(6.) Positive sphenoid 1! (a), negative sphenoid — % (a’),
scalenohedron 2* (¢), and prism of first order 110 (m) fig. 217.

(7.) Positive sphenoid %! (a), negative sphenoid - (a'),
basal plane oo ol (o), scalenohedrons 2 ‘¢) and 3 (¢),

fig. 218.
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Fig. 223.
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Fig. 224.  Fig. 225,

Fig. 226.
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(8.) Positive sphenoid }* (a), negative sphenoid - 2 (a'),
scalenohedron =* (¢), derived pyramid of second order 1ao 2
(), and prism of first order 110 (m), fig. 219.

(9.) Positive sphenoid 2! (a), negative sphenoid — 2 (a'),
positive sphenoid %™ (a?), positive sphenoid 2™ (a’), basal
plane ®xl (o), and five scalenohedrons """ (cee’ete’),
fig. 220.

73. A few vertical projections of hemihedral forms are
given in figs. 221 to 226.

Fig. 221 shows the planes of the pyramld of first order
(a), ‘those of the hemihedral form of the ditetragonal
prism 2= are indicated by the sign (g).

Fig. 299 is the hemihedral form of the ditetragonal prism
e (q), the hemidedral double four-faced pyramid }*=ah k!
(e), the pyramid of second order 1oom (%), and the basal
plane o ol (o).

Fig. 223 is the sphenoid derived from the prism of second
order Er=xhol(b).

Fig, 224 shows the positive sphenoid derived from the
pyramid of first order ' (a), the negative sphenoid (a’),
pyramid of second order (b) and (b'), basal plane (o), the prism
of second order 1w o (1), and the ditetragonal prism (g).

Fig. 225 shows two pyramids of first order ¢ and o,
ditetragonal pyramid ¢, sphenoid derived from a ditetragonal
pyramid ¢/, and the pyramid of second order (B).

Fig. 226 is a pyramid of second order (b), and three
sphenoids derived from ditetragonal pyramids ¢ cc.
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FORM (Continued)—THE RHOMBIC OR PRISMATIC
SYSTEM.

74. Axes and Elements.—In this system there are three
axes situated at right angles to each other. Two of these
are known as lateral, the third is principal. All three are
of different lengths. The greater lateral or ¢ macrodiagonal ”
axis may be generally indicated by the sign 7%, the lesser
lateral by the sign + £, the principal by+{ In giving the
symbols for the various forms and faces this order will always
be observed. A plan of the two lateral axes is given in fig.
227. The vertical axis is at right angles to these. The
system is known as rhombic, because its most perfect form is
a double pyramid on a rhombic base; as prismatic, because
of the great number of prisms which occur in if.

Fig. 227. Fig. 228. Fig. 229.

75. Holohedral Forms.—The only complete holohedral
form is the rhombic pyramid A%l, in which %, %, /, are all
finite. This is bounded by eight triangular planes, each
cutting the three axes at some point less than 0. Rhombic
pyramids with the sign %4l are illustrated in figs. 228 and
229. From this complete form a serics of partial forms
result, when either 4, %, or / becomes infinite. All of these
forms ave incomplete, .., they must be combined with other
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forms to produce complete crystals. These partial forms,
gix in number, are produced as follows:—

1. When % becomes infinite the ¢ macrodome ” okl or ool1.

9. When % becomes infinite the ¢¢ brachydome”Aw 7 or 1o 1.

3. When ! becomes infinite the ¢“rhombic prism” Akw
or 11w.

4, When % and % become infinite the ¢ basal pinacoid ” oo ool
or o wl.

5. When / and ! become infinite the “macropinacoid ” cokeo
ormlw,

6. When % and ! become infinite the ‘brachypinacoid”
hwo wor low.

The forms 1leo, Alew, and lkw, when combined with
o w1, compose a series of complete rhombic prisms, which
may be called prisms of the 1st, 2nd, and 3rd orders.

The forms cok! and 1w o together compose a rhombic prism
of 4th order.

The forms % o and w10 together compose a rhombic prism
of 5th order.

The forms oo o1, ®@lw, and leo o together compose a
rectangular prism.

76. Right Rhombic Pyramids.—These are bounded by
eight equal scalene triangles. The general aspect varies
much according to the relative length of the axes. Fig. 228
represents a pyramid in which the vertical axis is much
greater than the two laterals; fig. 229, one in which it is
much shorter, The symbols of these pyramids will be 111
Mitchell and Miller, P Naumann.*

77. Derived Rhombic Pyramids.—Of these there are five
varieties as follows :—

a. With the parameter 7, multiplied or divided, conse-
quently the sign is 11m Mitchell, 111 Miller, mP Naumann.

b. With the parameter %, multiplied or divided, the sign
is 1m1 Mitchell, 1%1 Miller, Pn Naumann.

¢. With the parameter %, multiplied or divided, the sign
is m11 Mitchell, h11 Miller, Pn Naumann.

* It must be remembered that as in the pyramidal system so here
the sign 111 does not imply equality of the axes or parameters, since
each has its own proper length; but simply that they are neither
multiplied nor divided in the case in question.
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. With the parameters % and /, multiplied or divided—
sign 1nm Mitchell, 1kl Miller, mPn Naumann.

e. With the parameters % and Z multiplied or divided—
sign m1ln Mitchell, k1l Miller, mPrn Naumann.

Of these the second and fourth are called “brachypyramids,”
the third and fifth ‘ macropyramids.”

78. Right Rhombic Prisms.—These are incomplete forms
combined with the basal pinacoid o 1. They are of five
orders as follows:—The plane oo ool Mitchell, 001 Miller,
0P Naumann, occurs in all—

1st Order—sign 11co Mitchell, 110 Miller, P Naumann.

2nd Order—sign mlew Mitchell, K10 Miller, P Nauwmann.
These are called “ macroprisms.”

3rd Order—sign 1moo Mitchell, 1%0 Miller, =P Naumann.
These are called  brachyprisms,”

Fig. 232, Fig. 231.

The relation of the prism 11co to the axes is shown in fig.
230, where mm are the faces 11c0o. The situation .of the
prism within the pyramid 111 is given in fig. 232. Fig. 231
shows the relations of the three forms 1lw, mlw, and
1lmw , to the lateral axes.
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4th Order, the “macrodome”—sign ccmme Mitchell, Okl
Miller, Poo Nawmann, combined with the “brachypinacoid,”

1o oo Mitchell, 100 Miller, wPow Naumann.

The position of this form within the pyramid 111 is given
in figs. 233 and 234, where w represents the faces coll.

5th Order, the “brachydome ”—sign mw m Mitckell, 10!

Miller, Poo Naumann, combined with the ¢ macropinacoid”

wleo Mitchell, 010 Miller, P Naumann.

Its position within the pyramid 111 is shown in fig. 235,
where v represents the face 1w 1.

79. Right Rectangular Pyramids.—These are sometimes
produced by a combination of the planes of the macrodome
11 (w) with the brachydome 1w 1(v) as in fig. 236. The
situation of the axes is well shown in the figure.

80. Right Rectangular Prisms.—This is composed of the
three forms wPw , wPw, OP Naumann, these three forms
being the macropinacoid, the brachypinacoid, and the basal-
pinacoid respoectively. This form is illustrated in figs. 237,
238.

81. Combination of Pyramids with Pyramids—Pyra-
mids 111 (¢) 11m (¢'), fig. 239.

82. Pyramids with Pinacoids and Prisms.— Pyramid
111 (¢) and basal pinacoid @ ol (c), fig. 240.

Pyramid 111 (¢) and macropinacoid wlw (b), fig. 241.

Pyramid 111 (¢) and brachypinacoid 1w 1 (a), fig. 242,

Pyramid (¢) with brachypinacoids and macropinacoids (a)
and (b), fig. 243,

The same with basal pinacoid o 1 (c), fig. 244.

Pyramid 111 (e) with prism 11eo (m), fig. 245.

83. Pyramids with Brachydomes and Macrodomes.—
Pyramid 111 (¢) and the brachydome 1w 1 (v), fig. 246.

Pyramid 1nm (¢), brachydome owlm (d), macrodome
@lm’ (s), and brachydome oml (s”), fig. 247.

84. Pyramids with Domes and Prisms.—Pyramid 111 (¢),
macrodome w11 (w), and brachyprism 12w (p), fig. 248.

Pyramid 111 (¢), brachyprism 12w (p), prism 1leo (m),
brachydome 1o 1 (v), fig. 249, :

« Pyramid 11m (¢'), brachydome lewom (v), brachyprism
1neo (p'), and macroprism nlw (n), fig. 250.
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85. Domes, Prisms, and Pinacoids.—Macrodome o011 (s),
brachyprism 1200 (p), and macropinacoid ooleo (b), fig. 251.

Brachydome lwm (v), brachypinacoid lww (a), and
rhombic prism 11w (m), fig. 252.

Brachydome 1o m (v), and brachyprism 12w (p), fig. 253.

Macrodome 12 (s), brachydome low 1 (v), and basal
pinacoid o o1 (c), figs. 254, 255.

Macrodome o012 (w), prism 1l (m), and basal pinacoid
o ol (c), fig. 256.

Prism 11w (m), macroprism nlew (n), brachydome lwom
(v), and basal pinacoid o ool (¢), fig. 257.

Macroprism nlw (n), brachypinacoid lw o (a), pyramid
111 (), and basal pinacoid oo ool (c), fig. 258.

A complex crystal of barytes, described by Dana, from
Cheshire, Connecticut, is illustrated in fig. 259. It exhibits
the following forms :—

e = Pyramid 111 {4’ = Brachydome lo}
¢ = 11} |5 = Macropinacoid oolw
Bl 11} | w, = Macrodome ®l2
e = ’ 113 by »» »ll
m = Prism 1l | = o wl}
¢ = Basal pinacoid ol (v’ = ” wl}
a = Brachypinacoid lww |w" = ” »l}

v = Brachydome lol | %' = Macroprism 21w
The complete crystal contains no fewer than 80 planes.
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86. Vertical Projections.—A large series of rhombic
‘erystals projected on a plane parallel to the basal plane
o ol by lines parallel to the principal axis is given in figs.
260 to 349; the student will have little difficulty in assign-
ing their proper names to the various planes.

Fig. 260 is the pyramid 111 or 1lm, 261 to 264 are
various combinations of pyramids and prisms, and 265 is
the pyramid with the basal pinacoid.

.

Fig. 200, _ . Fig. 261 ‘Fig, 262.
Fig. 263. Fig.264. ~  Fig 265.

Figs. 266 to 271 are combinations of various prisms with
the basal pinacoid.

Figs. 272 to 275 are various macrodomes; 276 is the
macrodome with the basal pinacoid.

Figs. 277 to 282 are various brachydomes; 283 and 284
are brachydomes with the basal pinacoid.

Fig. 285 is that particular combination of the brachydome
and macrodome which forms a double pyramid with rect-
angular base.

Fig. 286 is the macrodome and brachydome, the former
predominating.

Fig. 287 is the same combination with the brachydome
predominating.

Fig. 288 is another combination of domes, and figs. 289
and 29¢ show various brachydomes and macrodomes with
the basal pinacoid.
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Fig. 268. £ Fig. 209

Tig. 270. Fig. 271. Fig. 272. Fig. 273.
Fig. 274, Fig. 275, Fig. 276,  Tig. 27
Fig. 278. " Fig. 279 Fig. 280. <1~ Tig 28L

Fig. 282, Tig. 283. Tig. 284. Tig. 285.
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Fig. 286. Fig. 287. Fig. 288,

Fig 202.  Fig. 203, Fig. 294,
Fig, 296. Fig. 297. Fig. 298. Fig, 209,

fiig. 301. Fig. 303.
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Fig. 318.

Fig. 321.
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Sk
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Fig. 335. Fig. 330.
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' Tigs. 291 to 296 are combinations of various pyramids
and macrodomes.

Figs. 297 and 298, the same, with the addition of the
basal pinacoid.

Figs. 299 to 314 are pyramids and brachydomes, 315 to
328 the same, with the basal pinacoid.

Figs. 329 to 334 are pyramids, macrodomes, and brachy-

domes; in 335 to 349 the basal pinacoid is added.
: Many of the above combinations include also prisms,
macroprisms, and brachyprisms, but these planes cannot
be shown by this mode of projection without lettering, as
explained in Art. 70.

87. Hemihedral Forms.—These are of three kinds, viz.—

a, Forms with inclined faces (k7).
5. Forms with symmetrical faces (cAk?).
v. Forms with parallel faces (zhkl).
« They consist of sphenoids, hemipyramids, and prisms.

88. Rhombic Sphenoids.—These are derived from the
rhombic pyramids 111, figs. 228, 229, by a development of one-
half the faces taken alternately. The relation of the positive
sphenoid to the axes is shown in fig. 350, the sign of which
is B Mitchell, 111 Miller, 3 Naumann. The negative
sphenoid 351 has the signs-1 Mitchell, k111 Miller,—*
Naumann.

' Corresponding sphenoids may be obtained from every
derived pyramid of each of the five orders described in
Art. 75.

89. Hemipyramids.—A development of the group of four
faces forming any solid angle of the rhombic pyramid 111,
figs. 228, 229, produces a symmetrical form to which the sign
chkl is given by Miller. The particular group of faces so de-
veloped is best indicated by Mitchell and Miller’s symbols,
which assign a particular modification of the general sign to
each plane.

For the group of faces around the angle £, fig. 228, the
full sign will be—

111, 111, 111, 111; or kkl, Rk, Ak, ki,
in which the central member of the symbol of each face pre-
serves its sign (+or-) unchanged. The symbol here will
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be ¢hkl. In like manner for the group of faces around the
angle { the full sign will be—

111, 111, 111, 111; or kI, Rkl, Rk, RE,
in which the last member of the symbol of each face pre-
serves its sign-unchanged. The symbol here may be c/kl.

Similar modifications of the general symbol may readily
be arranged for the faces meeting at each solid angle. Each
of the derived pyramids described in Art. 75 is subject to
similar hemihedral modifications.

90. Hemihedral Prisms.—These are forms consisting of
any two pairs of parallel faces of the pyramids 111 or A%/,
fig. 228. They have the general symbol #111 or =hkl,
modified, as explained in Art. 87, Prisms are similarly
produced from each of the brachydomes and macrodomes.

Fig. 342, Fig. 343. Fig. 344. Fig. 345

Fig. 346. Fig. 347. Fig. 348. Fig. 349.
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A combination of the positive and negative hemihedral
developments of the pyramid %47 is given in fig. 352, where
the large faces (¢) belong to the form wILkZ and the small ones
@) to h,

Fig. 359. Fig. 360. Fig. 361. Fig. 362.

91. Vertical Projections of Hemihedral Forms, —These
are given in figs, 363 to 362.

In the foregoing figures the following lettering is adopted
Planes parallel to—

lww =100=« ®l2 =012 =s or v/
»lw =010=15 ®lm =01lm =¢' or v’
wwl =001= ¢ wlm’'=01m'=s" or w”
11w =110=m lom=d or v

111 =1ll=¢ 7 lwo =n

1wl =101= » 102 =forv”

»ll =01ll=w 212 =y

12 =120=p 113 =g
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992. Sphere of Projection.—In fig. 363 the position of the
chief poles of this -
system are indicated
on the sphere of pro-
Jection: The example
chosen is the trystal
of barytes given in
fig. 364. The outline
of the prism 11 (m)
is indicated by a thick
broken line. The
poles of the various
faces are indicated by
dots, and lettered to
correspond with the
fig. 364.

To draw the figure
a circle is drawn with Fig. 363.
the centre ¢ and any convenient radius ce, then the axial
lines & - @, b - b, at right angles to each other.

The points mm are then taken on the circumference of
the circle, the angular distance am being 50° 50’, and the
lines m m are drawn through the centre c. These points m
are the poles of the planes (110 ) m, fig. 364.

By drawing the dotted lines ax at
right angles to cm, we get a projection
of the prism 11w, the relative lengths of
the lateral axes of which are as ca to cx=
1-227:1.

The poles of vv are determined by mea-
suring in the arc @ — b 37° 18’ towards - b,
as at 0, and letting fall the perpendicular Fig. 364.
von ac. The point v on the other side may be measured
directly from c.

For the poles of the macrodomes w”, ', and w, the points
B, v, and 3, are taken in the arc — a — b by measuring 28° 14,
38° 52', and 58° 10’ respectively, perpendiculars are then
dropped as before.

For the poles of the planes ee, a point ¢ ig taken in the
same wayon the aro m 0 a towards @, making m « = 25°42’, and
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dropping the perpendicular ee; g is determined in the same
way, only making =55° 17",

The remaining poles of the plane y are found by measur-
ing on the arc b ev from b towards y 63° 58",

The poles of all prisms will be on the circumference of the
circle ; of all brachydomes on aa; of all macrodomes on bb;
of all pyramids 11m on em; of all brachyprisms on the ares
am; of all macroprisms on the arcs bm; of all brachy-
pyramids on the triangles ac¢m; and of macropyramids on
the triangles b ¢ m.
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FORM (Continued)—THE OBLIQUE SYSTEM.

93. Axes, ete.—This system is so called because its forms
may be derived from an oblique octahedron or an oblique
prism. It has also been called monoclinohedric, hemiprismatic,
hemiorthotype, clinorhombic, hemihedric rhombic, two and one
membered, etc. There are three axes, two of which are at
right angles to each other, the third inclined at different
angles in different minerals. The lengths may be, and
usually are, all different. One of the two axes which are at
right angles is taken for the principal, the other is called
orthodiagonal, while that which is inclined to the principal
is termed the clinodiagonal.

94. Elements,—The variable conditions in this system
are, the ratios of two axes to the third, and the inclination
of the clinodiagonal to the principal. - These conditions will
be all defined if the following three angles, or their normals,
be determined, viz.,, the angles made respectively by the
planes 1e0 1 with 1w 0,
lo1l with o0 o0l; and
111with ool ; (or,using
Naumann's symbols, Peo
with cwPow ; Poo with OP;
and Pwith[w P ]). The
normals to these angles
(@, B, v, respectively),
are the angular elements :
of the minerals in ques- Fig. 365.
tion, and « + 3 gives the inclination of the clinodiagonal to
the principal axis.

95. Oblique Pyramids.—The oblique rhombic octahedron,
fig. 365, is bounded by eight scalene triangles in two sets
of four, viz., four equal smaller triangles, and as many equal
larger triangles. The four planes Ak, Akl, hkl, hkl, compose
the form % & ! Miller and P Naumann. This is called the
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positive hemipyramid. The four planes Akl, Rkl, kkl, LK,
compose the form Akl Miller,— P Naumann. This is called
the negative hemipyramid. Together, these two sets of planes
compose the oblique rhombic pyramid, which is therefore a
compound of two forms. The primary pyramid is, of course,
that whose sign is 111 or 111.

96. Derived Pyramids.—From the pyramids just described
a series of derived pyramids may be derived, similar in posi-
tion, but differing in magnitude, These may be conveniently
arranged in three classes, viz.:—

1st Class.—By multiplying the principal axis by any
number sm, greater or less than unity, a series of new positive
and negative hemipyramids are obtained, the symbols of

which are 11m and 1lm Mitchell, mP and —mP Naumann.

2nd Class.—By multiplying the principal axis by any
number m, and the orthodiagonal by any number n, we
obtain a second series of positive and negative hemipyramids,
the symbols of which are 1nm and lnm Mitchell; mPr and
— mPn Naumann.

3rd Class.—Multiplying the principal axis by any number
m, and the clinodiagonal by any number =, we obtain a
third series of positive and negative hemipyramids, the
symbols of which are nlm and wlm Mitchell; (mPn) and
— (mPn) Nawmann.

9%7. Open Forms.—These result when either &, %, or /, or
any two of them become zero. Some have two planes, some
have four, but of themselves they cannot form a complete
figure. A large nmumber of oblique prisms are produced
by their combinations with each other, some of whxch have
rhombic and some rectangular bases.

98. Oblique Rhombic Prisms.—These are of severa.l kinds,
as follows:—

1st Order.—This includes two distinet “forms,” viz., the
form 11 Mitchell, 110 Miller, 0P Nauwmann, having four
faces, and the basal pinacoid o o1, 001, or OP, having two
faces. From this prism two classes of derived prisms may
be obtained, similar in position, but differing in dimensions;
the first class by multiplying the orthodiagonal axis by any
number greater or less than unity, producing the prism
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lmeo, o wl; and the second class by similarly multiplying
the clinodiagonal, producing the prism mlw, o col.

2nd Order.—These 4re combinations of the four planes of
the clinodome ool1 Matchell, 011 Miller, (P ) Naumann,
with the orthopinacoid leco oo IMitckell, 100 Miller, 0P
Naumann.

- From this prism a new series may be derived by multi-
plying the principal axis by any number more or less than
unity, producing the prism colm, leo .

99. The Oblique Rectangular Prism.— This includes
three forms, viz., orthopinacoids 100 Miller; wPw Nau-
mann (a); the clinopinacoids 010 Miller, ( »Pw ) Naumann
(8); and the basal pinacoids 001 Miller, OP Naumann (c).

100. .Right Prism on Oblique Rhombic Base.—This prism
consists of the positive orthodome 1 ool Mitchell, 101 Miller,
Poo Naumann (v); the negative orthodome leco 1 Aitchell,
101 Miller, — Poo Naumann; and the clinopinacoid owolw
Mitchell, 010 Miller, (P ) Naumann.

A series of derived pyramids may be obtained from this
prism also by multiplying the principal axis, when the
symbols will become 1 com, 1 com, ooleo.

101. Pseudoprisms.—It is evident that if the four planes
of the positive hemipyramid Akl, Akl, ki, hkl, are present in
any crystal to the exclusion of the negative hemipyramid, or
vice versa, the resulting figure will have all the appearance
of, and, in fact, will be a rhombic prism. This will be still
more striking if the ends happen to be closed by pinacoids,
To distinguish such forms from the true prisms it will be
well to name them as T have done.

‘Whatever the appearance of the combination, the symbols
will, of course, be those belonging to the respective hemi-

mids.

102. Hemihedral Forms.—These may, of course, be pro-
duced by the development of contiguous faces in pairs in any
of those “forms” which have four planes, .e., A, 7kl 110,
1lmw ,mlw, wll,or cwlm. They may very well be indicated
by prefixing the sign o to the symbol of the form in question,
or in the manner constantly adopted by Naumann, thus %',
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Tt should, however, be noted that the sign %47 and 5%4I have
been specially applied to those pairs of faces in the hemi-
pyramids A%l and 7kl, where k& has the same sign, whether
positive or negative. Thus in fig. 366 oAkl will indicate the
pair of planes ee, and ghkl will indicate ¢i. Rhombic
sphenoids may result from a combination of the planes Ak,
1kl with the planes %ik{, hkl; or of the remaining four planes
of the oblique octahedron.

In fig. 365 the crystal is projected in a plane parallel to
the principal, but not parallel either to the orthodiagonal or
clinodiagonal axes. In the jfollowing figures the plane of
projection is parallel to the principal and clinodiagonal, and
normal to the orthodiagonal.

Iig. 366. Fig. 367.

108. Sphere of Projection.—To draw a map of the sphere
of projection for this system on the projection last described
take b as a centre, fig. 367, and draw a circle of any con-
venient radius with be as a radius.

Let aa’ be a diameter, preferably horizontal. Then make
ac =as many degrees as a + 5 (Art. 92). Then aa’= poles of
the orthopinacoids 1eo o, 10 o ; b is the pole of the clinopina-
coid ol ; and ¢ that of the basal pinacoid e 1. Biseet ac
in v, and draw vbv. Then vv are the poles of the positive
orthodomes 1 001, 1 001,  Bisect a'c in o', draw v'b’; v’ are
the poles of the negative orthodomes. The poles of the
clinodomes will fall on bc and b¢’; those of the positive
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“ hemipyramid 111 on 6w, b» of the negative hemipyramid 111
on bv', bv'. :

In t’ig. 368 is given a complete crystal of humite or chondro-

dite, the poles of the planes of which are marked on fig. 369,

Fig. 372.

104, Combinations.—A. series of combined forms in the
oblique system is given in figs. 370 to 419, which the student
will do well to study, Figs. 370 to 389 represent crystals
where a+ 3 is less than 90°; in the following figures, 390
to 419, the angle a + (3 is usually more than 90°. The letter-
ing adopted for all the figures is as follows :—

For the plane Iww @ for 1wl »

= wlo b ,, 1wl hore
n wowl ¢ _0311 w

73 1l m ,,. owll @

< 120 f

9 111 e 131

o 111 i

I3—i G
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CHAPTER XIV.
FORM (Continued)—THE ANORTHIC SYSTEM.

105. Axes.—This system is so called (a and opfos), on
account of the extremely irregular character of the crystals
belonging to it. Other names are doubly-oblique, friclino-
hedric, anorthotype, one and one membered, tetartorhombic,
tetartoprismatic, etc. There are three axes which are of
various lengths, and inclined to each other at various angles.
Either of them may be taken for the principal, when the
longer of the remaining axes may be called the macro-
diagonal, the shorter the brachydiagonal.  When the axes
are nearly at right angles the forms may superficially re-
semble those of the rhombic system, when two only are
nearly at right anglés they will resemble those of the oblique
gystem.

106. Elements.—The variable conditions in this system
are evidently five, viz., the lengths of two axes as compared
with the third and the angles between the various axes.

“

i

These elements may be determined by spherical trigono-'
metry, when the poles of any five planes lying in not less

than three zones are known, but the most convenient poles
are the following, viz., loo 0w, owlw, o owl, 1owl, wll.

_ Thus, in axinite the normals to the angles formed by planes

to which these poles respectively belong are:—

wwl 1w ==56° 55
wwl lww =97° 46’
wml wll =44° 43’
wwl wlw =89° 55
1o w wlw =77 30",

107. Doubly Oblique Pyramids.—Much ingenuity has

been expended in describing these, but they rarely if ever
occur in nature, and it is better to regard them as combina-
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tions of several distinet forms, each consisting of a pair of
similar planes oppositely situated as regards the centre of the
crystal.

Thus the doubly ob-
lique octahedron, fig.
420, i3 a solid bounded
by four pairs of equal
and similar scalene tri-
angles. These octa-
hedrons are regarded
as combinations of the
four forms composed of
the planes ¢, ¢, ¢, e
(with their respective opposite planes). These forms taken
separately are called tetarto-pyramids.

The general symbol of the whole octahedron may be A%,
that of Naumann is P. The symbols of the various separate
forms are:—

Fig. 420.

For. Mitchell and BMiller, Naumann.
111 111 111 P2
111 1t i11 1p
11 1i1 11 T
111 111 1l P

Of course, octahedrons of several distinct. kinds may be
derived from these by lengthening or shortening either
one or two of the parameters, as already described under
the oblique system; but as there are very few minerals
crystallizing in this system —less than a dozen whose
forms have been numerically determined —we need not
devote any space to them
here.

108. Doubly Oblique
Prisms. — These also are
best studied as combinations
of open forms. Fig. 421
represents the doubly ob-
lique prism of 2nd order
with its axes, where the Fig. 421 -,

plane « is one plane of the form 1w e (or the bracky-
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pinacoid), b of the form colewo (or the macropinacoid), ¢ of
the form o ool, or the basal pinacoid. The symbols are as
follows :—

Brachypinacoid, 1w w Mitchell, 100 Miller, P Naumann.

Macropinacoid, ool Mitchell, 010 Miller, Pow Naumann.
Basalpinacoid, o ol Mitchell, 001 Miller, OP Noaumann.

Derived oblique prisms are of many kinds, indeed any
three pairs of planes whose poles do not all lie in the same
zone circle may produce such a prism.

109. Doubly Oblique Sphenoids.—These are produced by
the development of one-half the planes of the doubly oblique
octahedron alternately, i.e., they are combinations of two
forms instead of four. They rarely occur in nature, and
there would be little advantage in devoting space to their
study here.

Fig. 422, Fig. 423, Fig. 424,

110. Sphere of Projection.—This is drawn in various
positions, according to the peculiar character of the crystals
to be illustrated. 1In general the figures of this system are
best projected on a plane, perpendicular to the axis of the
zone low o, leo 1, by lines parallel to that axis.  Fig. 422 is
the sphere of projection of anorthite drawn in this manner.
The poles of the zone just referred to fall then on the circle,
while that of the plane oo 1 is seen near the centre at c.

Figs. 423 and 424 are crystals of anorthite, whose poles are
indicated by the dots in fig. 422. Figs. 423 to 430 are all
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drawn on the same projection. In figs. 431 to 433 a different
projection is chosen, in order to show numerous small planes
which would not otllerwise be very well seen.
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In all the figures the various symbols are indicated by the
same letters, viz.:—

low = a 200" =0
lww = @ 130 = z
wloo = b 130 = 2
wiw = b 130 = 2
owl = ¢ 130 = &
111 = e 131 o=l
‘i & & e o s
111 = ¢ 203 =g
111 = e wll = d :
11w = 20 = h
1iw = m 9l : h
o = o a2 % =N
1l = m, ®2l = n
el — Do sk e )
1ol = 7 41 = v
=121 = 8 901 = w



CHAPTER XYV.
FORM (Continued)—THE HEXAGONAL SYSTEM.

111. Axes, ete.—This system is so called because of the
numerous hexagonal prisms which occur in it. It is also
called rhombohedral because of its numerous rhombohedrons,
and monotrimetrical and three and one awxial from the pro-
perties of its axis. There are four axes, three of which lie
in one plane, are inclined to each other 60°, and are of equal
length, while the fourth is at right angles to them, passes
through their intersections, and is of variable length. The
three equal axes are called lateral, the fourth axis principal.*

112. Angular Element.—The angle made by the principal
axis with the mormals to the planes of the chief pyramid
occurring in any particular substance crystallising in this
system is called the angular element of that substance, as
described in Art. 56. It is the only variable element in the
system, and from it the typical forms and the lengths of the
axes or perameters may be derived. The angular element
differs widely in different minerals, from 27° 20’ in tourma-
line to 81° 20’ in parisite.

113. Holohedral Forms—Pyramids.—These are of three
orders as follows:—

* Professor Miller refers the forms of the ¢ rhombohedral ” system
to three axes which coincide with the normals to the planes of the
principal rhombohedrons. These three axes will be, of course, of
equal length, and equally inclined to each other, but their inclina-
tion will differ in each particular substance, and will depend upon
its angular element. This system is more consistent with those
already described for the other systems, and is decidedly better for
calculation. But the system of four axes is believed to give in its
formule a clearer view of the relations of the various forms to each
other; besides which the principal axis is of great natural import-
ance, as it is the optic axis of all the transparent substances crystal-
lising in the systems.
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1. Double six-faced pyramid of 1st order. This form is
bounded by twelve equal isosceles triangles; each plane cuts
two of the lateral axes at equal distances from the centre,
and the principal axis at its extremity. The symbol there-
fove is 111. Fig. 434 shows the situation of the axesin a
crystal where the principal axis is much longer than the
laterals, fig. 440 where it is very little longer. The symbols
of this form will be 111 Maitchell, P Naumann. Brooke
and Miller regard this pyramid as a combination of the two
distinet rhomboids which will be described hereafter as its
hemihedral forms. The situation of the axes, as viewed from
above, is seen in fig. 435.

2. Double six-faced pyramid of 2nd order. This also is
bounded by twelve equal isosceles triangles, it only differs
from that just deseribed in the position of the lateral axes;
fig. 436 shows the situation of the axes in the pyramid of
second order, the symbols of which are 121 Mutchell, 521
Miller, P2 Naumann. Each plane cuts the principal axis
and one lateral axis at normal distances from the centre, and
two other lateral axes (prolonged) at twice the normal dis-
tance, as shown at aa. A double six-faced pyramid third
order will be described later as a hemihedral form,

Fig. 434. Fig. 436. Fig. 437.
114. Derived Pyramids.—From each of the orders of

o



THE HEXAGONAL SYSTEM. 109

pyramids just described a series of pyramids may be derived
by multiplying the principal axis by any number greater or
less than unity. For derived pyramids of the 1st order the
general symbols will be 11m Mitchell, Pm Naumann; for
those of the second order 12m Mitchell, mP2 Naumann,
kil Miller.

115. Prisms.—Each order of pyramids has its correspond-
ing hexagonal prism which results when the principal axis
is multiplied by infinity. Figs. 435 and 436 serve to show
the situation of the lateral axes in the two orders of hex-
agonal prisms. = A third order of hexagonal prisms will be
described hereafter as a hemihedral form.

The symbols for those of the 1st order are 110 Mitchell,
P Nauwmann, 211 Miller; for the 2nd order 1200 Mitchell,
wP2 Naumann, 011 Miller. These prisms are really open
or incomplete forms, they may be regarded as combinations
of the planes just described with the basal pinacoids oo ool
Mitchell, OP Naumann, 111 Miller.

116. Dihexagonal Pyramids. —These are bounded by
twenty-four equal scalene triangles, as shown
in fig. 437, but they are not known to occur
as complete forms in nature, the symbols are
1mn Matchell, nPn Naumann. The situation
of the lateral axes is shown in fig. 438; when
m =2 it might be mistaken for a combina-
tion of the pyramids of 1st and 2nd order. Fig. 438,

117. Dihexagonal Prism.—This is an open form, having
the same relation to the dihexagonal pyramid as the hexa-
gonal prisms have to the double six-faced pyramids. The
symbols are 1nw Mitchell, wPn Naumann. The situation
of the lateral axes may be seen in fig. 438.

118. Sphere of Projection.—With C ag centre, and any
convenient radius, draw the circle M,, G, ete., fig. 439.
Starting from M,, mark off M,, etc., equal to the radius,
Join M,, M,; M,, M,; M,, M; then the lines so produced
will represent the lateral axes of the erystal, and the point
C the pole of the plane oo wl, 7.e., the north pole of the
sphere of projection, while M, M,, ete., will be the poles of
the planes 121 situated on the equator; bisect cach of the
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arcs M,, M,, ete,, in G, G,, etc., then the points G will be
the poles of the planes 110 ; those of 1ml will lie between
m and G on the equator, the
actual position depending upon
the value of m. The poles of
the pyramids 11m will lie on
the lines G, ¢, etc., those of the
pyramids 12m on the lines M,,
¢, ete., those of the dihexagonal
pyramids 1mn within the spaces
M, G, ¢, the positions varying
with the angular element of
the crystal and the value of m
or n.
_ 119. Hemihedral Forms.—
Fig. 439. These are of two kinds, those
with parallel and those with ¢nclined faces. The parallel-
faced forms are the rhombohedrons, derived from the double
six-faced pyramids of lst and 2nd orders; the double six-
faced pyramid of 3rd order; the hexagonal scalenohedron
derived from the dihexagonal pyramid; and the hexagonal
prism of 3rd order derived from the dihexagonal prism.

The hemihedral forms with inclined faces are the double
three-faced pyramid, derived from the double six-faced pyra-
mids of 1st and 2nd orders; the double six-faced trapezohe-
dron from the dihexagonal pyramid; and the triangular
prism from the hexagonal prisms of 1st and 2nd order.
~ 120. Rhombohedrons.—These are hemihedral forms of the
double six-faced pyramids, and they occur in series corre-
sponding with the different pyramids. For each pyranil
there are two rhombohedrons, distinguished as positive anl
negative. Thus, figs. 441 and 442 represent the rhombo-
hedrons derived from the pyramid 111, fig. 440. The
positive, fig. 441, corresponding with the shaded planes in
fig. 440, the negative with the unshaded planes. The
rhombohedrons are bounded by six equal rhombic planes,
having twelve equal edges. If we place one so that the two
three-faced solid angles which are formed by the union of equal
angles of the rhombic faces are upright, its principal axis
‘will then be vertical as it joins these angles. In the rhombo-
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hedron derived from the pyramid of 1st order the lateral
sxes will then join the central points of those edges which
zre not polar, 4.e., which do not form part of the three-faced
solid angles just mentioned. The symbols are *+ [**] Mitchell;
+?or+R Naumann. Miller's symbol for the positive

rhombohedron is 100; for the negative rhombohedron 122,

Similar rhombohedrons may be similarly derived from all
the other double six-faced pyramids, <.e., by developing the
planes alternately. Their symbols will be those of the
respective pyramids modified as above.

Fig. 440. Fig. 441. Fig. 442.

121. Scalenohedrons.—These are derived from the dihex-
agonal pyramids by developing alternate pairs of faces, the
upper pairs also alternating with the lower ones. Like the
rhombohedrons they may be either positive or negative,
Figs. 443 and 444 show the positive and negative scaleno-
hedrons derived from the dihexagonal pyramid, fig. 437.

The lateral edges of the scalenohedrons correspond with
the edges of certain rhombohedrons which may be inscribed
within them, as in figs. 445 and 446. The symbols are
derived from those of the dihexagonal pyramid in the usual
manner. Itis evident that the principal axis of the sealeno-
hedron must have a certain ratio to that of the inscribed
rhombohedron ; this ratio is often simple, i.e., it may be 2,
3, 4, etc., times as long. This being the case its general
symbol is sometimes written 2R, 3R, 4R, etc. Miller's
symbol for the scalenohedrons is = {%4Z.} ;

122. Double Six-faced Pyramids of 3rd Order.—If the
alternate upper planes of the dihexagonal pyramid are pro-
duczd to meet the corresponding lower planes and the other
planes are suppressed, the resulting form will differ only in
the position of its lateral axes from those of the 1st and 2nd
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orders; by making the principal axis equal oo a hexagonal
prism of 3rd order results. From these 3rd order pyramids
rhombohedrons and double three-faced pyramids may be pro-
duced by developing alternate planes only, but these will be
tetartohedral forms.

Fig. 445. Fig. 446.

123. The Double Six-Faced Trapezohedron is produced
by developing alternate upper planes of the dihexagonal
pyramid and opposite alternate lower planes. The resulting
figure is a double six-faced trapezohedron. By developing
one-half of these planes alternately we obtain a double three-
faced trapezohedron, which is also a tetartohedral form.

From the double six-faced pyramids of 1st, 2nd, and 3rd
orders, double three-faced pyramids may be obtained by
developing alternate upper planes and their corresponding
Jower planes. In the case of the 1st and 2nd orders of



HEXAGONAL COMBINATIONS. 113

pyramids they will be Zemihedral in that of the 3rd order
they will be Zetartohedral forms.

124. Three-faced Prisms.—From the hexagonal prisms
of all three orders triangular prisms may be produced by
developing alternate planes. Those so produced from prisms
of 1st and 2nd order will be Aemikedral, those from the 3rd
order are tetartohedral forms.

125. Combinations.—In the following figures 457 to 475
the lettering indicates planes having symbols as below :—
£

C o ol

= : o, =
1) 128 o
L I
I_{‘ i +[12£] g = Imw
Byles= -[1;_‘] R Al
s/ = +[#]

126. Prisms and Pyramids.—Fig. 447 is the pyramid
and prism 111 + 11eo ; fig. 448 the same with the addition
of o ool; fig. 449 is the pyramid 111 with the prism 120 ;
fig. 450 two pyramids of 1st order 11m (d and d); one pyra-
mid of 2nd order (¢) ; the prism of 1st order 11eo (G); prism
of 2nd order 12e0 (M), and the basal plane o o1 (¢); fig. 451
shows a pyramid of 1st order 1lm (d); prism of 1st order
11e0 (G); of 2nd order 12w (M); the dihexagonal prism
1mn (f), and the basal plane w0 1 (¢).

12%. Prisms and Rhombohedrons.—Fig. 452 is a com-
bination of the positive rhombohedron [*!] with the hexagonal
prism 1200 ; fig. 453 is the same with the chief axis increased,
and rather differently placed; fig. 454 is the prism 1leo with
the rhombohedron [%*]; ‘fig. 455 is the prism 12:0 with the
same rhombohedron; fig. 456 the same with the addition of the
rhombohedron [%7]; fig. 457 is the rhombohedron [%'] with
the rhombohedron [%]; fig. 4568 the rhombohedrons [%] and
-],

128. Rhomhohedrons and Scalenohedrons.—Fig. 459 is
the prism 1lw, the prism 12w, the rhombohedron [%7],
another rhombohedron [“Tf"], and the scalenohedron lmn;
fig. 460 is a thombohedron [%"], with the scalenohedron 1mn.

13—1 H
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Fig. 447. Fig, 448,

Fig. 455,
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Fig. 461 is a rhombohedron and scalenohedron; fig. 462
a scalenohedron/and prism; fig. 463 a scalenohedron and prism
of different order.

Fig. 463.
Fig. 464 is a very complex crystal of calcite, in which the

following planes appear:—
R, the rhombohedron [’;—1]

R Naumann

U, i %4 = 4R -
g, the scalenohedron RIS s
s 7 = Rs 3
5 » = §R*¥ -,
.- G, the prism 11 = wP o
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Fig. 465 is a complex crystal of quartz, showing the
following planes— -

d, &', d’, d’, Four pyramids of 1st order.

8, A three-faced pyramid.
w, v, w, ¥, Four double three-faced trapezohedrons.
M, Planes of the prism 120,

The following series of figures 466 to 497 is projected on
a plane perpendicular to the principal axis by lines parallel
to that axis, and at right angles to the plane of projection,
according to the plan adopted by Messrs Brooke and Miller.

%

Fig. 472, Fig.'473.



HEXAGONAL COMBINATIONS. 117




MINERALOGY.

118

Fig. 495.

. 404,

Fig

Fig, 493.

Tig. 497.

Tig. 496.
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In the foregoing description of the hexagonal system, we
have but rarely given the symbols adopted by Professor
Miller, because there is seldom anything like a parallelism
between them and the symbols used by Mitchell or Naumann,
owing to the totally different axes employed in the two cases.
But we may here note the symbols of the planes indicated
below, which will serve as keys to the interpretation of the
forms most likely to be met with, viz. :(—

Mitchell Novmann Miller

Form 111 =y = 100+122
,s 1lm = mP =S
+[3] = *Ror iwg = 100
;5 120 = P, = 011
, 1o’ = P = oIl
,, @l = 0P = 111
121 = P, or Rew, = 521
12m = mP2 or mR»' = hkt
i[l?] = '—';? or mR =" hkE
1now | = oPn = hki
1mn = mPn = Rkl

07

I

£ ['L:"] = whil



CHAPTER XVI.
OF MACLES AND THE IRREGULARITIES OF CRYSTALS.

129, Macles, Twin-crystals, or Hemitropes, are groups
of two or more crystals, which appear as if mutually inter-
secting each other, or sometimes as if a single crystal had
been cut in two in a certain direction, one part turned round
a certain number of degrees, and then re-united. The axis
around which the portions move, or may be supposed to
move, is called the twin-awxis, and the plane of movement the
twin-plane. Thus, if the octahedron, fig. 498, be cut in two,
in the direction of the dotted line or twin-plane b5, one-half
rotated on the axis ¢ ¢ through 90°% and the two again united,
a macle like fig. 499 will result, a form which is frequently
met with in spinel, alum, and other minerals. Of course,
no such division and re-union has really taken place; the
whole crystal having taken that form from its first origin.

Little is known of the crystallising forces, and almost
nothing of that branch which leads to the formation of twin-
crystals, but the results of this action are very common,
and it is found that the twin-axes of macles are always
inclined to each other, and to the principal axes of the
different parts, in certain definite directions for each mineral
species, the crystals of which affect the macled form.

130. Cubical Macles.—Figs. 498 to 505 are macles occur-
ring in the cubical system. Figs. 498 and 499 have already
been referred to. In fig. 500 the twin-planes are parallel to
one of the faces 1oo o0 ; this form occurs in fuor occasion-
ally; it shows that it is not necessary that the members of
a twin system should be exactly composed of Zalves of the
forms from which they are derived. In fig. 501 the twin-
plane is 111, the macle shows faces of both cube and octa-
hedron, and occurs in cuprite. Fig. 502 is a common macle
in pyrites.

Macled crystals may generally be recognised by their re-
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entering angles, but occasionally, as in fig. 503, there are no
re-entering angles. This is a macle of the rhombic dodeca-
‘hedron; the twin-plane, as before, iy parallel to one of the
planes 111, and the angle of revolution is 90°. Here, too,
cc is the twin-axis, and b b the twin-plane. e,

Fig. 502. Fig. 503. Fig. 504.
Figs. 504, 505, represent interpenetrating tetrahedrons of

fahlerz, the twin-plane being 111.
131. Tetragonal Macles.—Examples are given in figs. 506

to 510. which occur in cassiterite and rutile. The last figure

much resembles an hexagonal combination.



122 MINERALOGY.

132. Rhombic Macles are given in figs. 511 to 521. A
macle of chalcocite is given in fig. 511; staurolite in figs. 513,
513; bournonite in fig. b14; cerussite and Aragonite in figs.
515, 516, 517; marcasite in fig. 518; wolfram in fig. 519;
chrysoberyl in fig. 520; harmotome in fig, 521.

Fig. 511.
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Fig. 518, Fig. 519. Fig. 520.

133. Oblique Macles are given in figs. 522 to 525, all of
which occur in orthoclase. Fig. 525 is the same as fig. 524,
seen from above. [

134. Anorthic Macles occur frequently in albite, oligoclase,
and anorthite. A macle of albite is given in fig. 526.

135. Hexagonal Macles.—These are very common, especi-
ally in quartz and calcite. Figs. 527, 528, are met with in
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the former; fig. 529 is a very frequent macle in the latter.
Many most beautiful hexagonal macles occur in snow crystals,
eight of these forms are given in fig. 530. :

Fig. 521, Fig. 022, Fig, 523,

Fig. 524. Fig. 525. Fig. 526.

In macles composed of two members whose crystallographic
axes are continuous with each other, so that the planes of one
are continued without interruption into the ‘other, we cannot
always determine with certainty whether such combinations
should be regarded as macles or not. : Thus, in fig. 531, we may
either treat the whole crystal as a combination of the prism
and complete rhombohedron, or, viewing it as a twin, with a
twin-plane &b, we may regard the upper planes as belonging’
to the posttive, and the lower to the negative rhombohedron.
In this case it is impossible to determine with certainty; but
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there are sometimes in such cases irregularities or partial
modifications which enable us to determine the question
with absolute certainty, such as the planes m in fig. 533,
" which is a macle of pyrargyrite figured by Dana.
. 136, Twin-planes.—In the cubical system the twin-plane
is usually parallel to the plane 111, sometimes to 1co 1.

In the pyramidal system the chief twin-planes are parallel
to the faces 1oo 0, 110, 1o 1, 10 3, 111, 113.

In the rhombic system the principal twin-planes are
parallel to the planes 11w, ®wlw, low,lwl, 1w $, 1o 2,
1o 2, ll, 114, 138,

In the oblique system the chief twin-planes are 1w o
o wl, 31w, 1o 1, 102, ll, 12

In the anorthic system the twin-planes are wlw and
oo owl, There are also twin-planes perpendicular to a plane

passing through the poles of the zone 11w, olw, 1lw, to
those of the zone o w1, 1w 1, 10 2; and of the zone 1o w0,
11w, 11w,

In the hexagonal system the chief twin-planes are parallel
to ww»l, 110, 121, + Ry + 1R, — iR, - 2R,

Usually 2 movement through 90° would bring one member
of a twin system into a position corresponding with that of
the other, but in some instances a movement of 180° would
be necessary.

13%. Irregularities of Crystals.—These are very frequent,
especially in the case of large crystals. 'We can only describe
a few in this chapter. They may arise from the imperfect
development of certain planes, the curvature of ¢ planes,”
striations, roughnesses, druses, or interruptions; they are due
probably to a want of room to crystallise, or a too free or too
scanty supply of material, the aggregation of small crystals,
etc. Certain combinations also give rise to deceptive forms
which are often very difficult to deteot.

138. Imperfect Development.—Examples are given in
figs. 533 to 536. Figs. 533, 534, represent common forms
in alum; fig. 535 is a crystal of spinel, described by the
Comte de Bournon; fig. 536 is a crystal of garnet figured
by Dana. Many other examples might be given. In all
such instances of imperfect development, <.c., of a greater
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development of similar planes on some sides of the centre
than on others, the angles made by the different planes (or
their normals) with each ‘other are unchanged. Thus, in
figs. 533 and 534 the angles included between adjacent faces
will be accurately those of a perfect octahedron, 70° 32’ be-
tween normals, or 109° 28’ between adjacent faces.

139. Curvature.—Examples are common in the diamond,
dolomite, chalybite, and many other minerals. Figs. 537 to
539 have been observed in the first; figs. 540, 541, 542, in
the second; fig. 543 in cinnabar; fig. 544 in quartz.

140. Strla.tlons, ete. ——Frequently certain planes of crystals
are seen to be siriated in certain directions, as, for instance,
the quartz crystals last figured. These striations may really
be looked upon as a series of minute modifications or alter-
nations of planes, as in the crystal of beryl from the United
States, fig. 545. Fig. 544 would appear to owe its curvature
to a similar series of alternations on a much smaller scale.
Many crystals are rough on certain planes, and sometimes
this roughness takes the form of a series of minute planes
belonging to the same, or to a related crystal form. Thus,
many octahedrons of fluor have their planes roughened with
minute triangular or square planes, corresponding to the
faces 111 and 1w w0, such crystals have been called complex,
compound, or polysynthetic. Anocther kind of druse is when
a crystal is sprinkled over on certain planes with minute
separate crystals of the same or another mineral. This is
really a coating deposited after the supporting crystal was
fully formed, and the mineral is said to be invested. We
shall again refer to these druses in the chapter on pseudo-
morphs.

We may here refer to the peculiar results of such alter-
nations of form as are illustrated in figs. 546, 547. The
first is a skeleton cube of Zalite or rock- salt found sometimes
in nature, it also occurs in fluor. The somewhat similar
octahedron of gold, fig. 548, is also remarkable for the peculiar
stalactitic formation of its lower portion.

141. Deceptive Forms.—Many of these have been already
referred to and illustrated. Thus in the cubical system the
tetrahedron and octahedron so closely resemble the pyramid
111 and the sphenoid 4} of chalcopyrite, belonging to the
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pyramidal system, that they can only be distinguished by
careful measurement. The irregularly developed octahedron,
fig. 535, closely resembles an hexagonal form, while the rhom-
bic dodecahedron and deltohedron, fig. 536, might easily be
mistaken for a pyramidal combination, and the imperfectly
developed crystal of alum, fig. 533, for a rhombic crystal.
An irregularly developed rhombic dodecahedron, like fig. 548,
is undistinguishable from an hexagonal prism with trihedral
summits. Again, many combinations in the pyramidal
system closely resemble others belonging to the rhombic
system when the ortho- and brachy-diagonals happen to be
nearly equal. The same may be said of anorthic forms, one
of whose lateral axes happens to be nearly at right angles
to another, and we have seen that the macle of rutile, fig,
510, exactly resembles an hexagonal combination.

Rhombic macles are often scarcely distinguishable from
hexagonal prisms and pyramids, as in the cases of Aragonite,
cerussite, nitre, ete., fig. 517. The macle of harmotome, fig,
521, exactly resembles a pyramidal prism. In all such cases,
as we have already said in referring to the difficulty of

‘'Fig. 547.
13—1
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determining whether some macles of calcite are macles or not,
search must be made for roughnesses, striations, variations of
cleavage, slightly developed modifications, and the like, when a
clue will generally be found leading to the true determinations.

142. Homology of different Systems,—As the position of
any plane is accurately known when its intersections with
three imaginary lines, called axes, all of which do not lie in
one plane, are known, it would not be difficult to apply a
system of three equal axes crossing each other at right angles
to all erystal forms. Thus, supposing the respective lengths
of the axes of the form 111 in the pyramidal system to be
as1:1:2, and those of a form 111 in the rhombic system
to be as 1 :2 : 3, then, still referring all planes to three axes,
as in the cubical system, the symbols of the planes will be
112 and 123 respectively. The planes of the cube, tetragonal
prism of second order, and of the prism on rectangular basc
in the rhombic system will be:

R e s 1w, wlw, lc/ooo wlw, wwl, wwl
Square prism, ............. 1w w, wlm, oo, oaloo @2, &%l
" Rectangular prism,...... 2w, wlw, 20w, wln, ®wd, »ws,

Similiar modifications might be arranged on this principle
for &ll possible forms; but, of course, if the lengths of the
axes did not happen to be in such simple ratios (and it is
very seldom that the ratios are so simple), the symbols would
be greatly encumbered by fractions. It will be observed
that the parallelism of the symbols for the cube, with those
for the rectangular prism (rhombic system), is less than with
-those for the square prism (tetragonal system). In the case
of oblique, anorthic, and hexagonal crystals the parallelism
of symbols would be still less, and there would be more
difficulty in determining them, but it would evidently be
quite possible to use such a universal system of axes.

We may here, howeyer, call attention to the similarity
which has been shown to exist, by Professor Dana, between
certain cubical and oblique forms. Figs. 548, 549, will
serve to illustrate his remarks. Fig. 548 is a rhombic dode-
cahedron, placed so that one of the trihedral angles is nearly
at the summit or apex; and fig. 549 is a crystal of orthoclase.
The planes of the rhombic dodecahedron are in each case
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marked d, but, in fig. 549, there are in addition three planes
marked @, which correspond to the faces of the cube ; three
corresponding to the deltohedron 122, which truncate the
edges of the rhombic dodecahedron, and finally, one of the
planes of the octahedron appears in the figure marked o.

If a dodecahedron be so placed that an octahedral axis,
i.e., the line between the apices of two of the trihedral solid
angles is vertical, it is then a six-sided prism with trihedral
summits, If now this axis be inclined 8° 6’ (as in fig. 548),
in one of the diametral planes of the six-sided prism, it will
have the inclination of the axis of orthoclase (as in fig. 549),
and this 8° 6’ is the greatest amount of divergence from the
dodecahedral angles that occurs in the species. The planes
dd are inclined to each other at angles near 120° and as
there are twelve in the crystal, they may be taken as their
representatives although somewhat distorted.

The planes s, twelve in number, also have angles with each
other near 150°, and they correspond with those of the
deltohedron.

The planes a« make angles with the planes d which are
near 135° the angle of the true cubical combination, and as
they are six in number they may obviously be compared
with the cubical faces.

Finally, the plane marked o is inclined very nearly 125° 16
and 144° 44’ respectively to the cubic and dodecahedric
faces, these being the correct angles for the true cubical com-
binations. These planes, therefore, may obviously be compared
with the octahedral faces, but as they are only two in number,
it is evident that six are suppressed.

The two cleavages in orthoclase are parallel to dodeca-
hedric faces, and the twin-planes are either dodecahedric or
cubic. Dana observes: ‘“These relations hold true also for
the triclinic felspars, the only peculiarity in which is that
the principal section has slight lateral obliquity, so that the
two (dodecahedric) cleavage planes incline to one another
93° 15’ instead of 90°”

143. Dimorphism.— Some mineral substances, such as
carbonate of lime and sulphide of iron crystallise in two
distinet forms, having different axes. Thus calcite and
Aragonite are dimorphous forms of carbonate of lime, the first
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crystallising in the hexagonal, the second in the rhombic
system. In like manner sulphide of iron crystallises in the
rhombic system in marcasife, and in the cubical system in
pyrites. Blende (cubical), and wurizite (rhombic); senar-
montite (cubical), and valentinite (rthombic); and barytocalcite
(oblique), and bromlite (rhombic), are additional examples of
dimorphism. Some substances, as titanic oxide and silica,
crystallise in three distinet forms, and are said to be tri-
morphous. Sulphide of silver affords another example of
trimorphism as it crystallises in the cubical system in argen-
tite, in the rhombic system in daleminzite, and again in the
rhombic system, but with different parameters in acanthite.
These different forms of crystallization in the same mineral
substance are believed to indicate different conditions exist-
ing at the time of the formation of the substance—thus
the temperature or pressure existing at the time of crystal
lization of carbonate of lime may determine whether the
resulting mineral shall be calcite or Aragonite.

144. Isomorphism.—When substances of different chemical
composition crystallise in similar or nearly similar forms,
they are said to be ¢somorphous, thus the carbonates of lime,
iron, magnesia, and manganese are isomorphous, since they
all erystallise in the hexagonal system, and the angles of their
chief rhombohedrons do not differ from each other, except
by a very few degrees. Moreover, it is found that these
carbonates are rarely alone in natural mineral substances, a
portion of the one carbonate being almost always ¢ replaced ”
by one of the others. In any isomorphous group the similarity
of form is generally accompanied by a similarity of other
physical properties. In the cubical system isomorphism is, of
course, very common, although not universal. The more im-
portant isomorphous or vicarious mineral substances (capable
of replacing each other in atomic proportions without affect-
ing the resulting form), may be arranged as follows:—

I. SiMPLE SUBSTANCES—

a. Fluorine and chlorine, iodine, bromine.
Sulphur and selenium.
Arsenic, antimony, tellurium, bismuth.
. Cobalt, iron, nickel.
Copper, silver, mercury, gold.

SRS ™
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II.—A, OxipEs—Formula, RO or R—

a. Lime, magnesia, protoxide of irom, protoxide of man-
ganese, oxide of zinc, oxide of nickel, oxide of cobalt,
potash, soda, yttria, oxide of cadmium, oxide of cerium.

b. Lime, baryta, strontia, oxide of lead.

B. Oxmpes—Formula, R,0 or R,—
a. Sub-oxide of copper, sub-oxide of lead.
C. Oxmpes—Formula, R,0; or R —
a. Alumina, perox1de of 1ron, peroxide of manganese,
oxide of chromium, oxide of bismuth.
b. Oxide of antimony, arsenious acid.
D. OxipEs—Formula, RO,=R—
a. Oxide of tin, oxxde of titanium,
E. Oxmes—Formula, R, 05_R —
a. Phosphoric acid, arsenic acid.
F. Oxipes—Formula, RO;=R—
a. Su(%phunc acid, selenic acid, chromic acid, manganic
acl
b. Tungstic acid, molybdic acid.

IIL.-—A. SurpHIDES—Formula, RS,=R"—
£ a. Sulphide of iron, sulph1de of zine.
B. SurpHIDES—Formula, RS=R'—
a. Sulphide of copper, sulphide of silver.
C. SvrpEIDES—Formula, R,S;=R,"
a. Sulphide of antlmony, sulpzhxde of arsenic.

145. Polymerous Isomorphism.—Scheerer states that in
compounds containing magnesia, protoxide of iron, and the
other oxides mentioned (II. A @) above, part of the base may
be replaced by water, in the proportion of three equivalents of
water for each equlvalent of base replaced. Thus, 3MgO, SiO,,
2MgO, 8i0, + 3H,0, and MgO, 8i0, + 6H,0 are 1somorphous
compounds, the first bemn' chry Jsolzte, the last serpentine. This
theory has been adversely criticised by Haidinger, Naumann,
and Rammelsberg, and, on the whole, seems still to need con-
firmation from facts.

146. Aggregates.—Crystals and crystalline grains of the
same or different minerals are often intermixed regularly or
irregularly together in great quantities to form rock-masses.
These are called mineral aggregates. The most important
are the granular or granitic, porplyritic, oolitic, saccharoid,
and foliated aggregates. The study of these belongs to
Petrology.



CHAPTER XVII.
OF DIMORPHISM, PSEUDOMORPHISM, axp PETRIFACTION.

147. Pseudomorphism.—In the last chapter we have
described certain “deceptive forms,” which, while apparently
belonging to one system of crystallization, really belong to
another. We have now to describe certain bodies, called
Pseudomorphs, the results of processes of change which are
constantly going on in nature, and which occur in forms
different from those properly belonging to the substances
in question.

148. Hypostatic* Psendomorphs.—These are formed by
the deposition of mineral matter upon the surface of pre-exist-
ing minerals. 'When the new matter is deposited only on the
exterior, as in the case of the “druses” already referred to,
the term ewogenet is used; when upon the interior of a
hollow mineral the term esogene} is applied; and if in both
the term amphigene.§ Exogene pseudomorphs often retain
the original mineral within them, partly or completely filling
up the interior; but sometimes they are mere hollow shells,
empty, or filled with water, or with mineral solutions. Some-
times these hollow shells have been subsequently filled with
new mineral substance, and still later the shell itself has been
removed, when the final result is a new body having pre-
cisely the form of the original. All these different stages
have been observed, for example, in pseudomorphs of quartz,
after fluor, in the Gwennap Mines; chalybite, after gypsum,
at Virtuous Lady Mine.

Umosraros (hypostatos), to be sustained.
=£ (ex), without; and ywouas (ginomai), I am born.
T &5 (es), within; and yivopat.
§ apps (amphi), both; and ywopas
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149. Metasomatic Pseudomorphs.*—In these, which are
the most common, as well as the most important, pseudo-
morphs, some only of the elements present have been usually
changed by removal or substitution. The original crystal
appears to have been surrounded, by canses which we need
not now study, by media, such as air, water, hydrofluoric
acid, etc., capable of affecting its decomposition, slowly or
rapidly as the case may be. This medium has removed
some of the ingredients or components, and has sometimes
given up some of its own at the same time, which remain
behind to form part of the new substance. If these changes
are slow they may not affect the original form of the sub-
stance acted on. This kind of pseudomorphous action has
often taken place on a very large scale; thus there is good
reason to believe that over large tracts of country the fel-
spar, forming a constituent part of masses of granitic rocks,
has been completely kaolinised by hydrofluoric acid acting
from below, and large veins of carbonate of iron have been
converted into limonite or hematite by the action of the air
or of surface waters.

‘When the result has been the formation of a more highly
oxidised or electro-negative substance, as in the case of chaly-
bite or iron pyrites converted into hematite, the new bodies
are called anogenet pseudomorphs; when the change is in
the opposite direction, as of felspar into kaolin, or rock-salt
into gypsum, they are called kafogenel psendomorphs.

150. Petrifactions.—These also are processes of pseudo-
morphism of several kinds. The most general is that in which
a thin layer of mineral matter is deposited upon an organic
substance so as to preserve its external form, as in the cases
of the so-called petrifying springs of Matlock and elsewhere,

If now the organic substance forming the interior of such
a petrifaction should be removed by solution, or should shrink
and fall to powder from decay, and the cavity be filled up
anew with mineral matter, and finally the original coating
be removed, a cast having the form of the original substance
would be left. Of this nature are the sandstone tree-stems

* usra (meta), together with (used sometimes in the sense of

transposition); and scwpa (soma), a body or substance.
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